The search functionality is under construction.

Author Search Result

[Author] Zhijun WANG(2hit)

1-2hit
  • An Adaptive Handoff Triggering Mechanism for Vehicular Networks

    Luobei KUANG  Zhijun WANG  Ming XU  Yingwen CHEN  

     
    PAPER-ITS

      Vol:
    E95-A No:1
      Page(s):
    278-285

    Handoff plays an important role in vehicular networks due to high movement of vehicles. To provide seamless connectivity under Access Points (AP), this paper proposes an adaptive handoff triggering method to minimize communication time for a vehicle with an AP switch (i.e., whether and when to trigger a handoff process). In the proposed method, combined with an improved data transmission rate based trigger, handoff triggering decision is executed based on three different communication methods (called C-Dire, C-Relay and C-ALLRelay) to minimize the transmission delay when a vehicle moves from an AP to another. Transmission delay is derived through considering vehicle mobility and transmission rate diversity. The simulation results show that the proposed method is proven to be adaptive to vehicular networks.

  • An Efficient Signal Detection Method Based on Enhanced Quasi-Newton Iteration for Massive MIMO Systems

    Yifan GUO  Zhijun WANG  Wu GUAN  Liping LIANG  Xin QIU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/07/21
      Vol:
    E107-A No:1
      Page(s):
    169-173

    This letter provides an efficient massive multiple-input multiple-output (MIMO) detector based on quasi-newton methods to speed up the convergence performance under realistic scenarios, such as high user load and spatially correlated channels. The proposed method leverages the information of the Hessian matrix by merging Barzilai-Borwein method and Limited Memory-BFGS method. In addition, an efficient initial solution based on constellation mapping is proposed. The simulation results demonstrate that the proposed method diminishes performance loss to 0.7dB at the bit-error-rate of 10-2 at 128×32 antenna configuration with low complexity, which surpasses the state-of-the-art (SOTA) algorithms.