The search functionality is under construction.

Author Search Result

[Author] Gen MARUBAYASHI(4hit)

1-4hit
  • Multiple Access Performance of Parallel Combinatory Spread Spectrum Communication Systems in Nonfading and Rayleigh Fading Channels

    Shigenobu SASAKI  Hisakazu KIKUCHI  Jinkang ZHU  Gen MARUBAYASHI  

     
    PAPER

      Vol:
    E78-B No:8
      Page(s):
    1152-1161

    This paper describes the multiple access performance of parallel combinatory spread spectrum (PC/SS) communication systems in nonfading and Rayleigh fading multipath channels. The PC/SS systems can provide the high-speed data transmission capability by transmitting multiple pseudo-noise sequences out of a pre-assigned sequence set. The performance is evaluated in terms of average bit error rate (BER) by numerical computation. In nonfading white gaussian channel, the PC/SS systems are superior to conventional direct sequence spread spectrum (DS/SS) systems under the identical spreading factor condition. In Rayleigh fading channel, the performance of the PC/SS system without diversity is poorer than that of the DS/SS system. By including the explicit and implicit diversity, the performance of the PC/SS system becomes better than that of conventional DS/SS systems. A longer spreading sequence is assignable to a PC/SS system having the spreading factor equal to that in the conventional DS/SS system. Hence, the error control coding is easily. It is found that the PC/SS systems including diversity and Reed-Solomon coding improves the multiple access performance.

  • Performance of Parallel Combinatory SS Communication Systems in Rayleigh Fading Channel

    Shigenobu SASAKI  Hisakazu KIKUCHI   Jinkang ZHU  Gen MARUBAYASHI  

     
    LETTER-Communications

      Vol:
    E77-A No:6
      Page(s):
    1028-1032

    The performance of parallel combinatory spread spectrum (PC/SS) communication systems in the frequency-nonselective, slowly Rayleigh fading channel is studied. Performance is evaluated by symbol error rate using numerical computation. To overcome the performance degradation caused by fading, we also studied the effects of selection diversity and Reed-Solomon coding applied to the PC/SS system. As a result, a remarkable improvement in error rate performance is achieved with Reed-Solomon coding and diversity technique. The coding rate for the maximum coding gain is almost a half of that in the additive white gaussian noise channel.

  • FOREWORD

    Gen MARUBAYASHI  

     
    FOREWORD

      Vol:
    E74-B No:5
      Page(s):
    1071-1072
  • Error Rate Analysis of Coherent and Differential Multiphase Parallel Combinatorial Spread Spectrum Systems

    Shigenobu SASAKI  Hisakazu KIKUCHI  Jinkang ZHU  Gen MARUBAYASHI  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1196-1203

    This paper investigates the error rate performance of parallel combinatorial spread spectrum (PC/SS) communicaion systems that use coherent and differential multiphase modulation: multiphase parallel combinatorial spread spectrum (MPC/SS) communication systems. The PC/SS systems are multicode SS systems based on orthogonal pseudo-noise (PN) sequences. Data is transmitted by delivering a combination of multiple PN sequences among a set of pre-assigned PN sequences. In the MPC/SS systems, every PN sequence on transmission is modulated by q-ary coherent or differential phase shift keying (PSK). Symbol error rate (SER) and average bit error rate (BER) in coherent and differential MPC/SS systems are investigated. The BER comparison between the MPC/SS systems and simple multicode SS systems with q-ary coherent and differential PSK is also presented. Numerical results show that the MPC/SS systems are superior to the conventional q-ary PSK systems, if they have equal spectral efficiency.