The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Jinkang ZHU(4hit)

1-4hit
  • Multiple Access Performance of Parallel Combinatory Spread Spectrum Communication Systems in Nonfading and Rayleigh Fading Channels

    Shigenobu SASAKI  Hisakazu KIKUCHI  Jinkang ZHU  Gen MARUBAYASHI  

     
    PAPER

      Vol:
    E78-B No:8
      Page(s):
    1152-1161

    This paper describes the multiple access performance of parallel combinatory spread spectrum (PC/SS) communication systems in nonfading and Rayleigh fading multipath channels. The PC/SS systems can provide the high-speed data transmission capability by transmitting multiple pseudo-noise sequences out of a pre-assigned sequence set. The performance is evaluated in terms of average bit error rate (BER) by numerical computation. In nonfading white gaussian channel, the PC/SS systems are superior to conventional direct sequence spread spectrum (DS/SS) systems under the identical spreading factor condition. In Rayleigh fading channel, the performance of the PC/SS system without diversity is poorer than that of the DS/SS system. By including the explicit and implicit diversity, the performance of the PC/SS system becomes better than that of conventional DS/SS systems. A longer spreading sequence is assignable to a PC/SS system having the spreading factor equal to that in the conventional DS/SS system. Hence, the error control coding is easily. It is found that the PC/SS systems including diversity and Reed-Solomon coding improves the multiple access performance.

  • Performance of Parallel Combinatory SS Communication Systems in Rayleigh Fading Channel

    Shigenobu SASAKI  Hisakazu KIKUCHI   Jinkang ZHU  Gen MARUBAYASHI  

     
    LETTER-Communications

      Vol:
    E77-A No:6
      Page(s):
    1028-1032

    The performance of parallel combinatory spread spectrum (PC/SS) communication systems in the frequency-nonselective, slowly Rayleigh fading channel is studied. Performance is evaluated by symbol error rate using numerical computation. To overcome the performance degradation caused by fading, we also studied the effects of selection diversity and Reed-Solomon coding applied to the PC/SS system. As a result, a remarkable improvement in error rate performance is achieved with Reed-Solomon coding and diversity technique. The coding rate for the maximum coding gain is almost a half of that in the additive white gaussian noise channel.

  • Distributed Interference Matched Scheduling for Multicell Environment

    Xingzai LV  Jinkang ZHU  Ling QIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2112-2121

    We address the problem of multiuser co-channel interference scheduling in multicell interference-limited networks. Our target is to optimize the network capacity under the SIR-balanced power control policy. Since it's difficult to optimize the original problem, we derive a new problem which maximizes the lower bound of the network capacity. Based on the analysis of this new problem, we propose an interference matched scheduling algorithm. This algorithm considers the caused co-channel interference and the channel conditions to schedule the "matched" users at the same time. We prove that this interference matched scheduling algorithm optimizes the lower bound of the network capacity for any arbitrary numbers of cells and users. Moreover, this scheduling method is low-complexity and can be implemented in a fully distributed fashion. Simulation results reveal that the performance of the proposed algorithm achieves near optimal capacity, even though it does not optimize the network capacity directly. Finally, the proposed algorithm holds a great gain over formerly proposed round robin and power matched scheduling method, especially when the scale of the network is large.

  • Error Rate Analysis of Coherent and Differential Multiphase Parallel Combinatorial Spread Spectrum Systems

    Shigenobu SASAKI  Hisakazu KIKUCHI  Jinkang ZHU  Gen MARUBAYASHI  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1196-1203

    This paper investigates the error rate performance of parallel combinatorial spread spectrum (PC/SS) communicaion systems that use coherent and differential multiphase modulation: multiphase parallel combinatorial spread spectrum (MPC/SS) communication systems. The PC/SS systems are multicode SS systems based on orthogonal pseudo-noise (PN) sequences. Data is transmitted by delivering a combination of multiple PN sequences among a set of pre-assigned PN sequences. In the MPC/SS systems, every PN sequence on transmission is modulated by q-ary coherent or differential phase shift keying (PSK). Symbol error rate (SER) and average bit error rate (BER) in coherent and differential MPC/SS systems are investigated. The BER comparison between the MPC/SS systems and simple multicode SS systems with q-ary coherent and differential PSK is also presented. Numerical results show that the MPC/SS systems are superior to the conventional q-ary PSK systems, if they have equal spectral efficiency.