The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hae-Yong YANG(2hit)

1-2hit
  • A Bandwidth Extension Scheme for G.711 Speech by Embedding Multiple Highband Gains

    Hae-Yong YANG  Kyung-Hoon LEE  Sung-Jea KO  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E94-B No:10
      Page(s):
    2941-2944

    We present an improvement to the existing steganography-based bandwidth extension scheme. Enhanced WB (wideband) speech quality is achieved by embedding multiple highband spectral gains into a G.711 bitstream. The number of spectral gains is selected by optimizing the quantity of the embedding data with respect to the quality of the extended WB speech. Compared to the existing method, the proposed scheme improves the WB PESQ (Perceptual Evaluation of Speech Quality) score by 0.334 with negligible degradation of the embedded narrowband speech.

  • A Cryptographic SoC for Robust Protection of Secret Keys in IPTV DRM Systems

    Sanghan LEE  Hae-Yong YANG  Yongjin YEOM  Jongsik PARK  

     
    PAPER-Application

      Vol:
    E93-A No:1
      Page(s):
    194-201

    The security level of an internet protocol television (IPTV) digital right management (DRM) system ultimately relies on protection of secret keys. Well known devices for the key protection include smartcards and battery backup SRAMs (BB-SRAMs); however, these devices could be vulnerable to various physical attacks. In this paper, we propose a secure and cost-effective design of a cryptographic system on chip (SoC) that integrates the BB-SRAM with a cell-based design technique. The proposed SoC provides robust safeguard against the physical attacks, and satisfies high-speed and low-price requirements of IPTV set-top boxes. Our implementation results show that the maximum encryption rate of the SoC is 633 Mb/s. In order to verify the data retention capabilities, we made a prototype chip using 0.18 µm standard cell technology. The experimental results show that the integrated BB-SRAM can reliably retain data with a 1.4 µA leakage current.