The search functionality is under construction.

Author Search Result

[Author] Haifeng SUN(3hit)

1-3hit
  • Location-Aware Social Routing in Delay Tolerant Networks

    Guangchun LUO  Junbao ZHANG  Ke QIN  Haifeng SUN  

     
    LETTER-Network

      Vol:
    E95-B No:5
      Page(s):
    1826-1829

    This letter proposes an efficient Location-Aware Social Routing (LASR) scheme for Delay Tolerant Networks (DTNs). LASR makes forwarding decisions based on a new metric which uses location information to reflect the node relations and community structure. Simulation results are presented to support the effectiveness of our scheme.

  • JTAR: Junction-Based Traffic Aware Routing in Sparse Urban VANETs

    Haifeng SUN  Guangchun LUO  Hao CHEN  

     
    LETTER-Network

      Vol:
    E95-B No:3
      Page(s):
    1007-1010

    We propose a Junction-Based Traffic Aware Routing (JTAR) protocol for Vehicular Ad Hoc Networks (VANETs) in sparse urban environments. A traffic aware optimum junction selection solution is adopted in packet-forwarding, and a metric named critical-segment is defined in recovery strategy. Simulation results show that JTAR can efficiently increase the packet delivery ratio and reduce the delivery delay.

  • Greedy Zone Epidemic Routing in Urban VANETs

    Guangchun LUO  Haifeng SUN  Ke QIN  Junbao ZHANG  

     
    PAPER-Network

      Vol:
    E98-B No:1
      Page(s):
    219-230

    The potential of infrastructureless vehicular ad hoc networks (VANETs) for providing multihop applications is quite significant. Although the Epidemic Routing protocol performs well in highly mobile and frequently disconnected VANETs with low vehicle densities or light packet traffic loads, its performance degrades greatly in environments of high vehicle density together with heavy packet traffic loads that create serious bandwidth contention and frequent collisions. We propose a new epidemic routing protocol in urban environments called Greedy Zone Epidemic Routing (GZER), in which the neighbors of a vehicle are divided into different zones according to their physical locations. Each vehicle maintains a summary vector (SV) of packets buffered locally and zone summary vectors (ZSVs) of all packets buffered in each zone. Whether the infection will be transmitted in each zone is decided by the difference between SV and ZSV. Simulation results show that the proposed GZER protocol outperforms the existing solutions significantly, especially in the environments of high vehicle densities together with heavy packet traffic loads.