The search functionality is under construction.

Author Search Result

[Author] Ke QIN(6hit)

1-6hit
  • An Efficient Algorithm for Node-Weighted Tree Partitioning with Subtrees' Weights in a Given Range

    Guangchun LUO  Hao CHEN  Caihui QU  Yuhai LIU  Ke QIN  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:2
      Page(s):
    270-277

    Tree partitioning arises in many parallel and distributed computing applications and storage systems. Some operator scheduling problems need to partition a tree into a number of vertex-disjoint subtrees such that some constraints are satisfied and some criteria are optimized. Given a tree T with each vertex or node assigned a nonnegative integer weight, two nonnegative integers l and u (l < u), and a positive integer p, we consider the following tree partitioning problems: partitioning T into minimum number of subtrees or p subtrees, with the condition that the sum of node weights in each subtree is at most u and at least l. To solve the two problems, we provide a fast polynomial-time algorithm, including a pre-processing method and another bottom-up scheme with dynamic programming. With experimental studies, we show that our algorithm outperforms another prior algorithm presented by Ito et al. greatly.

  • Location-Aware Social Routing in Delay Tolerant Networks

    Guangchun LUO  Junbao ZHANG  Ke QIN  Haifeng SUN  

     
    LETTER-Network

      Vol:
    E95-B No:5
      Page(s):
    1826-1829

    This letter proposes an efficient Location-Aware Social Routing (LASR) scheme for Delay Tolerant Networks (DTNs). LASR makes forwarding decisions based on a new metric which uses location information to reflect the node relations and community structure. Simulation results are presented to support the effectiveness of our scheme.

  • Asymmetric Learning Based on Kernel Partial Least Squares for Software Defect Prediction

    Guangchun LUO  Ying MA  Ke QIN  

     
    LETTER-Software Engineering

      Vol:
    E95-D No:7
      Page(s):
    2006-2008

    An asymmetric classifier based on kernel partial least squares is proposed for software defect prediction. This method improves the prediction performance on imbalanced data sets. The experimental results validate its effectiveness.

  • Greedy Zone Epidemic Routing in Urban VANETs

    Guangchun LUO  Haifeng SUN  Ke QIN  Junbao ZHANG  

     
    PAPER-Network

      Vol:
    E98-B No:1
      Page(s):
    219-230

    The potential of infrastructureless vehicular ad hoc networks (VANETs) for providing multihop applications is quite significant. Although the Epidemic Routing protocol performs well in highly mobile and frequently disconnected VANETs with low vehicle densities or light packet traffic loads, its performance degrades greatly in environments of high vehicle density together with heavy packet traffic loads that create serious bandwidth contention and frequent collisions. We propose a new epidemic routing protocol in urban environments called Greedy Zone Epidemic Routing (GZER), in which the neighbors of a vehicle are divided into different zones according to their physical locations. Each vehicle maintains a summary vector (SV) of packets buffered locally and zone summary vectors (ZSVs) of all packets buffered in each zone. Whether the infection will be transmitted in each zone is decided by the difference between SV and ZSV. Simulation results show that the proposed GZER protocol outperforms the existing solutions significantly, especially in the environments of high vehicle densities together with heavy packet traffic loads.

  • Dynamical Associative Memory: The Properties of the New Weighted Chaotic Adachi Neural Network

    Guangchun LUO  Jinsheng REN  Ke QIN  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:8
      Page(s):
    2158-2162

    A new training algorithm for the chaotic Adachi Neural Network (AdNN) is investigated. The classical training algorithm for the AdNN and it's variants is usually a “one-shot” learning, for example, the Outer Product Rule (OPR) is the most used. Although the OPR is effective for conventional neural networks, its effectiveness and adequateness for Chaotic Neural Networks (CNNs) have not been discussed formally. As a complementary and tentative work in this field, we modified the AdNN's weights by enforcing an unsupervised Hebbian rule. Experimental analysis shows that the new weighted AdNN yields even stronger dynamical associative memory and pattern recognition phenomena for different settings than the primitive AdNN.

  • Active Learning for Software Defect Prediction

    Guangchun LUO  Ying MA  Ke QIN  

     
    LETTER-Software Engineering

      Vol:
    E95-D No:6
      Page(s):
    1680-1683

    An active learning method, called Two-stage Active learning algorithm (TAL), is developed for software defect prediction. Combining the clustering and support vector machine techniques, this method improves the performance of the predictor with less labeling effort. Experiments validate its effectiveness.