1-2hit |
This paper proposes a contourlet based adaptive watermarking for color images (CAWCI). A color image with RGB space is firstly converted to its YCbCr space equivalent; a luminance (Y) image and two chrominance (Cb and Cr) images are subsequently transformed into contourlet domain respectively; the watermark is embedded into the contourlet coefficients of the largest detail subbands of three images lastly. On the one hand, the embedded watermark is imperceptible because contrast sensitivity function and watermark visual mask are adopted in our CAWCI. On the other hand, the embedded watermark is very robust due to the spread specialty of Laplacian pyramid (LP) in contourlet transform. The corresponding watermarking detection algorithm is proposed to decide whether the watermark is present or not by exploiting the unique transform structure of LP. Experimental results show the validity of CAWCI in terms of both watermarking invisibility and watermarking robustness.
Contourlet transform (CT) is a new image representation method, which can efficiently represent contours and textures in images. However, CT is a kind of overcomplete transform with a redundancy factor of 4/3. If it is applied to image compression straightforwardly, the encoding bit-rate may increase to meet a given distortion. This fact baffles the coding community to develop CT-based image compression techniques with satisfactory performance. In this paper, we analyze the distribution of significant contourlet coefficients in different subbands and propose a new contourlet-based embedded image coding (CEIC) scheme on low bit-rate. The well-known wavelet-based embedded image coding (WEIC) algorithms such as EZW, SPIHT and SPECK can be easily integrated into the proposed scheme by constructing a virtual low frequency subband, modifying the coding framework of WEIC algorithms according to the structure of contourlet coefficients, and adopting a high-efficiency significant coefficient scanning scheme for CEIC scheme. The proposed CEIC scheme can provide an embedded bit-stream, which is desirable in heterogeneous networks. Our experiments demonstrate that the proposed scheme can achieve the better compression performance on low bit-rate. Furthermore, thanks to the contourlet adopted in the proposed scheme, more contours and textures in the coded images are preserved to ensure the superior subjective quality.