Contourlet transform (CT) is a new image representation method, which can efficiently represent contours and textures in images. However, CT is a kind of overcomplete transform with a redundancy factor of 4/3. If it is applied to image compression straightforwardly, the encoding bit-rate may increase to meet a given distortion. This fact baffles the coding community to develop CT-based image compression techniques with satisfactory performance. In this paper, we analyze the distribution of significant contourlet coefficients in different subbands and propose a new contourlet-based embedded image coding (CEIC) scheme on low bit-rate. The well-known wavelet-based embedded image coding (WEIC) algorithms such as EZW, SPIHT and SPECK can be easily integrated into the proposed scheme by constructing a virtual low frequency subband, modifying the coding framework of WEIC algorithms according to the structure of contourlet coefficients, and adopting a high-efficiency significant coefficient scanning scheme for CEIC scheme. The proposed CEIC scheme can provide an embedded bit-stream, which is desirable in heterogeneous networks. Our experiments demonstrate that the proposed scheme can achieve the better compression performance on low bit-rate. Furthermore, thanks to the contourlet adopted in the proposed scheme, more contours and textures in the coded images are preserved to ensure the superior subjective quality.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Haohao SONG, Songyu YU, "A Contourlet-Based Embedded Image Coding Scheme on Low Bit-Rate" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 9, pp. 2333-2340, September 2008, doi: 10.1093/ietisy/e91-d.9.2333.
Abstract: Contourlet transform (CT) is a new image representation method, which can efficiently represent contours and textures in images. However, CT is a kind of overcomplete transform with a redundancy factor of 4/3. If it is applied to image compression straightforwardly, the encoding bit-rate may increase to meet a given distortion. This fact baffles the coding community to develop CT-based image compression techniques with satisfactory performance. In this paper, we analyze the distribution of significant contourlet coefficients in different subbands and propose a new contourlet-based embedded image coding (CEIC) scheme on low bit-rate. The well-known wavelet-based embedded image coding (WEIC) algorithms such as EZW, SPIHT and SPECK can be easily integrated into the proposed scheme by constructing a virtual low frequency subband, modifying the coding framework of WEIC algorithms according to the structure of contourlet coefficients, and adopting a high-efficiency significant coefficient scanning scheme for CEIC scheme. The proposed CEIC scheme can provide an embedded bit-stream, which is desirable in heterogeneous networks. Our experiments demonstrate that the proposed scheme can achieve the better compression performance on low bit-rate. Furthermore, thanks to the contourlet adopted in the proposed scheme, more contours and textures in the coded images are preserved to ensure the superior subjective quality.
URL: https://global.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.9.2333/_p
Copy
@ARTICLE{e91-d_9_2333,
author={Haohao SONG, Songyu YU, },
journal={IEICE TRANSACTIONS on Information},
title={A Contourlet-Based Embedded Image Coding Scheme on Low Bit-Rate},
year={2008},
volume={E91-D},
number={9},
pages={2333-2340},
abstract={Contourlet transform (CT) is a new image representation method, which can efficiently represent contours and textures in images. However, CT is a kind of overcomplete transform with a redundancy factor of 4/3. If it is applied to image compression straightforwardly, the encoding bit-rate may increase to meet a given distortion. This fact baffles the coding community to develop CT-based image compression techniques with satisfactory performance. In this paper, we analyze the distribution of significant contourlet coefficients in different subbands and propose a new contourlet-based embedded image coding (CEIC) scheme on low bit-rate. The well-known wavelet-based embedded image coding (WEIC) algorithms such as EZW, SPIHT and SPECK can be easily integrated into the proposed scheme by constructing a virtual low frequency subband, modifying the coding framework of WEIC algorithms according to the structure of contourlet coefficients, and adopting a high-efficiency significant coefficient scanning scheme for CEIC scheme. The proposed CEIC scheme can provide an embedded bit-stream, which is desirable in heterogeneous networks. Our experiments demonstrate that the proposed scheme can achieve the better compression performance on low bit-rate. Furthermore, thanks to the contourlet adopted in the proposed scheme, more contours and textures in the coded images are preserved to ensure the superior subjective quality.},
keywords={},
doi={10.1093/ietisy/e91-d.9.2333},
ISSN={1745-1361},
month={September},}
Copy
TY - JOUR
TI - A Contourlet-Based Embedded Image Coding Scheme on Low Bit-Rate
T2 - IEICE TRANSACTIONS on Information
SP - 2333
EP - 2340
AU - Haohao SONG
AU - Songyu YU
PY - 2008
DO - 10.1093/ietisy/e91-d.9.2333
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 9
JA - IEICE TRANSACTIONS on Information
Y1 - September 2008
AB - Contourlet transform (CT) is a new image representation method, which can efficiently represent contours and textures in images. However, CT is a kind of overcomplete transform with a redundancy factor of 4/3. If it is applied to image compression straightforwardly, the encoding bit-rate may increase to meet a given distortion. This fact baffles the coding community to develop CT-based image compression techniques with satisfactory performance. In this paper, we analyze the distribution of significant contourlet coefficients in different subbands and propose a new contourlet-based embedded image coding (CEIC) scheme on low bit-rate. The well-known wavelet-based embedded image coding (WEIC) algorithms such as EZW, SPIHT and SPECK can be easily integrated into the proposed scheme by constructing a virtual low frequency subband, modifying the coding framework of WEIC algorithms according to the structure of contourlet coefficients, and adopting a high-efficiency significant coefficient scanning scheme for CEIC scheme. The proposed CEIC scheme can provide an embedded bit-stream, which is desirable in heterogeneous networks. Our experiments demonstrate that the proposed scheme can achieve the better compression performance on low bit-rate. Furthermore, thanks to the contourlet adopted in the proposed scheme, more contours and textures in the coded images are preserved to ensure the superior subjective quality.
ER -