Tomoki CHIBA Yusuke ASANO Masaharu TAKAHASHI
The proportion of persons over 65 years old is projected to increase worldwide between 2022 and 2050. The increasing burden on medical staff and the shortage of human resources are growing problems. Bedsores are injuries caused by prolonged pressure on the skin and stagnation of blood flow. The more the damage caused by bedsores progresses, the longer the treatment period becomes. Moreover, patients require surgery in some serious cases. Therefore, early detection is essential. In our research, we are developing a non-contact bedsore detection system using electromagnetic waves at 10.5GHz. In this paper, we extracted appropriate information from a scalogram and utilized it to detect the sizes of bedsores. In addition, experiments using a phantom were conducted to confirm the basic operation of the bedsore detection system. As a result, using the approximate curves and lines obtained from prior analysis data, it was possible to estimate the volume of each defected area, as well as combinations of the depth of the defected area and the length of the defected area. Moreover, the experiments showed that it was possible to detect bedsore presence and estimate their sizes, although the detection results had slight variations.
Atikur RAHMAN Nozomu KINJO Isao NAKANISHI
Person authentication using biometric information has recently become popular among researchers. User management based on biometrics is more reliable than that using conventional methods. To secure private information, it is necessary to build continuous authentication-based user management systems. Brain waves are suitable biometric modalities for continuous authentication. This study is based on biometric authentication using brain waves evoked by invisible visual stimuli. Invisible visual stimulation is considered over visual stimulation to overcome the obstacles faced by a user when using a system. Invisible stimuli are confirmed by changing the intensity of the image and presenting high-speed stimulation. To ensure invisibility, stimuli of different intensities were tested, and the stimuli with an intensity of 5% was confirmed to be invisible. To improve the verification performance, a continuous wavelet transform was introduced over the Fourier transform because it extracts both time and frequency information from the brain wave. The scalogram obtained by the wavelet transform was used as an individual feature and for synchronizing the template and test data. Furthermore, to improve the synchronization performance, the waveband was split based on the power distribution of the scalogram. A performance evaluation using 20 subjects showed an equal error rate of 3.8%.
Yanxi YANG Jinguang JIANG Meilin HE
The carrier-phase multipath effect can seriously affect the accuracy of GPS-based positioning in static short baseline applications. Although several kinds of methods based on time domain and spatial domain techniques have been proposed to mitigate this error, they are still limited by the accuracy of the multipath model and the effectiveness of the correction strategy. After analyzing the existing methods, a new method based on adaptive thresholding wavelet packet transform (AW) and time domain bootstrap spatial domain search strategy (TB) is presented (AWTB). Taking advantage of adaptive thresholding wavelet packet transform, we enhance the precision of the correction model and the efficiency of the extraction method. In addition, by adopting the proposed time domain bootstrap spatial domain strategy, the accuracy and efficiency of subsequent multipath correction are improved significantly. Specifically, after applying the adaptive thresholding wavelet packet method, the mean improvement rate in the RMS values of the single-difference L1 residuals is about 27.93% compared with the original results. Furthermore, after applying the proposed AWTB method, experiments show that the 3D positioning precision is improved by about 38.51% compared with the original results. Even compared with the method based on stationary wavelet transform (SWT), and the method based on wavelet packets denoising (WPD), the 3D precision is improved by about 26.94% over the SWT method and about 22.96% over the WPD method, respectively. It is worth noting that, although the mean time consumption of the proposed algorithm is larger than the original method, the increased time consumption is not a serious burden for overall performance.
Chunting WAN Dongyi CHEN Juan YANG Miao HUANG
Real-time pulse rate (PR) monitoring based on photoplethysmography (PPG) has been drawn much attention in recent years. However, PPG signal detected under movement is easily affected by random noises, especially motion artifacts (MA), affecting the accuracy of PR estimation. In this paper, a parallel method structure is proposed, which effectively combines wavelet threshold denoising with recursive least squares (RLS) adaptive filtering to remove interference signals, and uses spectral peak tracking algorithm to estimate real-time PR. Furthermore, we propose a parallel structure RLS adaptive filtering to increase the amplitude of spectral peak associated with PR for PR estimation. This method is evaluated by using the PPG datasets of the 2015 IEEE Signal Processing Cup. Experimental results on the 12 training datasets during subjects' walking or running show that the average absolute error (AAE) is 1.08 beats per minute (BPM) and standard deviation (SD) is 1.45 BPM. In addition, the AAE of PR on the 10 testing datasets during subjects' fast running accompanied with wrist movements can reach 2.90 BPM. Furthermore, the results indicate that the proposed approach keeps high estimation accuracy of PPG signal even with strong MA.
Jiansheng QIAN Bo HU Lijuan TANG Jianying ZHANG Song LIANG
Super resolution (SR) image reconstruction has attracted increasing attention these years and many SR image reconstruction algorithms have been proposed for restoring a high-resolution image from one or multiple low-resolution images. However, how to objectively evaluate the quality of SR reconstructed images remains an open problem. Although a great number of image quality metrics have been proposed, they are quite limited to evaluate the quality of SR reconstructed images. Inspired by this, this paper presents a blind quality index for SR reconstructed images using first- and second-order structural degradation. First, the SR reconstructed image is decomposed into multi-order derivative magnitude maps, which are effective for first- and second-order structural representation. Then, log-energy based features are extracted on these multi-order derivative magnitude maps in the frequency domain. Finally, support vector regression is used to learn the quality model for SR reconstructed images. The results of extensive experiments that were conducted on one public database demonstrate the superior performance of the proposed method over the existing quality metrics. Moreover, the proposed method is less dependent on the number of training images and has low computational cost.
Su LIU Xingguang GENG Yitao ZHANG Shaolong ZHANG Jun ZHANG Yanbin XIAO Chengjun HUANG Haiying ZHANG
The quality of edge detection is related to detection angle, scale, and threshold. There have been many algorithms to promote edge detection quality by some rules about detection angles. However these algorithm did not form rules to detect edges at an arbitrary angle, therefore they just used different number of angles and did not indicate optimized number of angles. In this paper, a novel edge detection algorithm is proposed to detect edges at arbitrary angles and optimized number of angles in the algorithm is introduced. The algorithm combines singularity detection with Gaussian wavelet transform and edge detection at arbitrary directions and contain five steps: 1) An image is divided into some pixel lines at certain angle in the range from 45° to 90° according to decomposition rules of this paper. 2) Singularities of pixel lines are detected and form an edge image at the certain angle. 3) Many edge images at different angles form a final edge images. 4) Detection angles in the range from 45° to 90° are extended to range from 0° to 360°. 5) Optimized number of angles for the algorithm is proposed. Then the algorithm with optimized number of angles shows better performances.
Dapeng FU Zhourui XIA Pengfei GAO Haiqing WANG Jianping LIN Li SUN
Objective: Detection of Electrocardiogram (ECG) characteristic points can provide critical diagnostic information about heart diseases. We proposed a novel feature extraction and machine learning scheme for automatic detection of ECG characteristic points. Methods: A new feature, termed as randomly selected wavelet transform (RSWT) feature, was devised to represent ECG characteristic points. A random forest classifier was adapted to infer the characteristic points position with high sensitivity and precision. Results: Compared with other state-of-the-art algorithms' testing results on QT database, our detection results of RSWT scheme showed comparable performance (similar sensitivity, precision, and detection error for each characteristic point). RSWT testing on MIT-BIH database also demonstrated promising cross-database performance. Conclusion: A novel RSWT feature and a new detection scheme was fabricated for ECG characteristic points. The RSWT demonstrated a robust and trustworthy feature for representing ECG morphologies. Significance: With the effectiveness of the proposed RSWT feature we presented a novel machine learning based scheme to automatically detect all types of ECG characteristic points at a time. Furthermore, it showed that our algorithm achieved better performance than other reported machine learning based methods.
Hong YANG Linbo QING Xiaohai HE Shuhua XIONG
Wireless video sensor networks address problems, such as low power consumption of sensor nodes, low computing capacity of nodes, and unstable channel bandwidth. To transmit video of distributed video coding in wireless video sensor networks, we propose an efficient scalable distributed video coding scheme. In this scheme, the scalable Wyner-Ziv frame is based on transmission of different wavelet information, while the Key frame is based on transmission of different residual information. A successive refinement of side information for the Wyner-Ziv and Key frames are proposed in this scheme. Test results show that both the Wyner-Ziv and Key frames have four layers in quality and bit-rate scalable, but no increase in complexity of the encoder.
Yu Min HWANG Gyeong Hyeon CHA Jong Kwan SEO Jae-Jo LEE Jin Young KIM
This paper proposes a novel wavelet de-noising scheme regarding the existing burst noises that consist of background and impulsive noises in power-line communications. The proposed de-noising scheme employs multi-level threshold functions to efficiently and adaptively reduce the given burst noises. The experiment results show that the proposed de-noising scheme significantly outperformed the conventional schemes.
Soft-thresholding is a sparse modeling method typically applied to wavelet denoising in statistical signal processing. It is also important in machine learning since it is an essential nature of the well-known LASSO (Least Absolute Shrinkage and Selection Operator). It is known that soft-thresholding, thus, LASSO suffers from a problem of dilemma between sparsity and generalization. This is caused by excessive shrinkage at a sparse representation. There are several methods for improving this problem in the field of signal processing and machine learning. In this paper, we considered to extend and analyze a method of scaling of soft-thresholding estimators. In a setting of non-parametric orthogonal regression problem including discrete wavelet transform, we introduced component-wise and data-dependent scaling that is indeed identical to non-negative garrote. We here considered a case where a parameter value of soft-thresholding is chosen from absolute values of the least squares estimates, by which the model selection problem reduces to the determination of the number of non-zero coefficient estimates. In this case, we firstly derived a risk and construct SURE (Stein's unbiased risk estimator) that can be used for determining the number of non-zero coefficient estimates. We also analyzed some properties of the risk curve and found that our scaling method with the derived SURE is possible to yield a model with low risk and high sparsity compared to a naive soft-thresholding method with SURE. This theoretical speculation was verified by a simple numerical experiment of wavelet denoising.
In this paper, we propose a novel design method of two channel critically sampled compactly supported biorthogonal graph wavelet filter banks with half-band kernels. First of all, we use the polynomial half-band kernels to construct a class of biorthogonal graph wavelet filter banks, which exactly satisfy the PR (perfect reconstruction) condition. We then present a design method of the polynomial half-band kernels with the specified degree of flatness. The proposed design method utilizes the PBP (Parametric Bernstein Polynomial), which ensures that the half-band kernels have the specified zeros at λ=2. Therefore the constraints of flatness are satisfied at both of λ=0 and λ=2, and then the resulting graph wavelet filters have the flat spectral responses in passband and stopband. Furthermore, we apply the Remez exchange algorithm to minimize the spectral error of lowpass (highpass) filter in the band of interest by using the remaining degree of freedom. Finally, several examples are designed to demonstrate the effectiveness of the proposed design method.
Hironori TAKIMOTO Syuhei HITOMI Hitoshi YAMAUCHI Mitsuyoshi KISHIHARA Kensuke OKUBO
It is estimated that 80% of the information entering the human brain is obtained through the eyes. Therefore, it is commonly believed that drawing human attention to particular objects is effective in assisting human activities. In this paper, we propose a novel image modification method for guiding user attention to specific regions of interest by using a novel saliency map model based on spatial frequency components. We modify the frequency components on the basis of the obtained saliency map to decrease the visual saliency outside the specified region. By applying our modification method to an image, human attention can be guided to the specified region because the saliency inside the region is higher than that outside the region. Using gaze measurements, we show that the proposed saliency map matches well with the distribution of actual human attention. Moreover, we evaluate the effectiveness of the proposed modification method by using an eye tracking system.
Huan HAO Huali WANG Naveed ur REHMAN Liang CHEN Hui TIAN
An improved multivariate wavelet denoising algorithm combined with subspace and principal component analysis is presented in this paper. The key element is deriving an optimal orthogonal matrix that can project the multivariate observation signal to a signal subspace from observation space. Univariate wavelet shrinkage operator is then applied to the projected signals channel-wise resulting in the improvement of the output SNR. Finally, principal component analysis is performed on the denoised signal in the observation space to further improve the denoising performance. Experimental results based on synthesized and real world ECG data verify the effectiveness of the proposed algorithm.
Hiraku OKADA Shuhei SUZAKI Tatsuya KATO Kentaro KOBAYASHI Masaaki KATAYAMA
We proposed to apply compressed sensing to realize information sharing of link quality for wireless mesh networks (WMNs) with grid topology. In this paper, we extend the link quality sharing method to be applied for WMNs with arbitrary topology. For arbitrary topology WMNs, we introduce a link quality matrix and a matrix formula for compressed sensing. By employing a diffusion wavelets basis, the link quality matrix is converted to its sparse equivalent. Based on the sparse matrix, information sharing is achieved by compressed sensing. In addition, we propose compressed transmission for arbitrary topology WMNs, in which only the compressed link quality information is transmitted. Experiments and simulations clarify that the proposed methods can reduce the amount of data transmitted for information sharing and maintain the quality of the shared information.
Ying-Ren CHIEN Po-Yu CHEN Shih-Hau FANG
Powerful jammers are able to disable consumer-grade global navigation satellite system (GNSS) receivers under normal operating conditions. Conventional anti-jamming techniques based on the time-domain are unable to effectively suppress wide-band interference, such as chirp-like jammer. This paper proposes a novel anti-jamming architecture, combining wavelet packet signal analysis with adaptive filtering theory to mitigate chirp interference. Exploiting the excellent time-frequency resolution of wavelet technologies makes it possible to generate a reference chirp signal, which is basically a “de-noised” jamming signal. The reference jamming signal then is fed into an adaptive predictor to function as a refined jamming signal such that it predicts a replica of the jammer from the received signal. The refined chirp signal is then subtracted from the received signal to realize the aim of anti-jamming. Simulation results demonstrate the effectiveness of the proposed method in combating chirp interference in Galileo receivers. We achieved jamming-to-signal power ratio (JSR) of 50dB with an acquisition probability exceeding 90%, which is superior to many anti-jamming techniques based on the time-domain, such as conventional adaptive notch filters. The proposed method was also implemented in an software-defined GPS receiver for further validation.
Huawei TAO Ruiyu LIANG Cheng ZHA Xinran ZHANG Li ZHAO
To improve the recognition rate of the speech emotion, new spectral features based on local Hu moments of Gabor spectrograms are proposed, denoted by GSLHu-PCA. Firstly, the logarithmic energy spectrum of the emotional speech is computed. Secondly, the Gabor spectrograms are obtained by convoluting logarithmic energy spectrum with Gabor wavelet. Thirdly, Gabor local Hu moments(GLHu) spectrograms are obtained through block Hu strategy, then discrete cosine transform (DCT) is used to eliminate correlation among components of GLHu spectrograms. Fourthly, statistical features are extracted from cepstral coefficients of GLHu spectrograms, then all the statistical features form a feature vector. Finally, principal component analysis (PCA) is used to reduce redundancy of features. The experimental results on EmoDB and ABC databases validate the effectiveness of GSLHu-PCA.
Gihyoun LEE Sung Dae NA KiWoong SEONG Jin-Ho CHO Myoung Nam KIM
Because wavelet transforms have the characteristic of decomposing signals that are similar to the human acoustic system, speech enhancement algorithms that are based on wavelet shrinkage are widely used. In this paper, we propose a new speech enhancement algorithm of hearing aids based on wavelet shrinkage. The algorithm has multi-band threshold value and a new wavelet shrinkage function for recursive noise reduction. We performed experiments using various types of authorized speech and noise signals, and our results show that the proposed algorithm achieves significantly better performances compared with other recently proposed speech enhancement algorithms using wavelet shrinkage.
Teerapong ORACHON Taichi YOSHIDA Somchart CHOKCHAITAM Masahiro IWAHASHI Hitoshi KIYA
The lifting wavelet transform (WT) has been widely applied to image coding. Recently, the total number of lifting steps has been minimized introducing a non-separable 2D structure so that delay from input to output can be reduced in parallel processing. However the minimum lifting WT has a problem that its upper bound of the rate-distortion curve is lower than that of the standard lifting WT. This is due to the rounding noise generated inside the transform in its integer implementation. This paper reduces the rounding noise introducing channel scaling. The channel scaling is designed so that the dynamic range of signal values is fully utilized at each channel inside the transform. As a result, the signal to noise ratio is increased and therefore the upper bound of the minimum lifting WT in lossy coding is improved.
Fairoza Amira BINTI HAMZAH Taichi YOSHIDA Masahiro IWAHASHI Hitoshi KIYA
As three dimensional (3D) discrete wavelet transform (DWT) is widely used for high resolution volumetric data compression, and to further improve the performance of lossless coding, the adaptive directional lifting (ADL) structure based on non-separable 3D DWT with a (5,3) filter is proposed in this paper. The proposed 3D DWT has less lifting steps and better prediction performance compared to the existing separable 3D DWT with fixed filter coefficients. It also has compatibility with the conventional DWT defined by the JPEG2000 international standard. The proposed method shows comparable and better results with the non-separable 3D DWT and separable 3D DWT and it is effective for lossless coding of high resolution volumetric data.
This paper proposes a new class of Hilbert pairs of almost symmetric orthogonal wavelet bases. For two wavelet bases to form a Hilbert pair, the corresponding scaling lowpass filters are required to satisfy the half-sample delay condition. In this paper, we design simultaneously two scaling lowpass filters with the arbitrarily specified flat group delay responses at ω=0, which satisfy the half-sample delay condition. In addition to specifying the number of vanishing moments, we apply the Remez exchange algorithm to minimize the difference of frequency responses between two scaling lowpass filters, in order to improve the analyticity of complex wavelets. The equiripple behavior of the error function can be obtained through a few iterations. Therefore, the resulting complex wavelets are orthogonal and almost symmetric, and have the improved analyticity. Finally, some examples are presented to demonstrate the effectiveness of the proposed design method.