The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] HeeSoo KIM(2hit)

1-2hit
  • Fault-Resilient Robot Operating System Supporting Rapid Fault Recovery with Node Replication

    Jonghyeok YOU  Heesoo KIM  Kilho LEE  

     
    LETTER-Software System

      Pubricized:
    2023/07/07
      Vol:
    E106-D No:10
      Page(s):
    1742-1746

    This paper proposes a fault-resilient ROS platform supporting rapid fault detection and recovery. The platform employs heartbeat-based fault detection and node replication-based recovery. Our prototype implementation on top of the ROS Melodic shows a great performance in evaluations with a Nvidia development board and an inverted pendulum device.

  • Bayesian Approach to Optimal Release Policy of Software System

    HeeSoo KIM  Shigeru YAMADA  DongHo PARK  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E88-A No:12
      Page(s):
    3618-3626

    In this paper, we propose a new software reliability growth model which is the mixture of two exponential reliability growth models, one of which has the reliability growth and the other one does not have the reliability growth after the software is released upon completion of testing phase. The mixture of two such models is characterized by a weighted factor p, which is the proportion of reliability growth part within the model. Firstly, this paper discusses an optimal software release problem with regard to the expected total software cost incurred during the warranty period under the proposed software reliability growth model, which generalizes Kimura, Toyota and Yamada's (1999) model with consideration of the weighted factor. The second main purpose of this paper is to apply the Bayesian approach to the optimal software release policy by assuming the prior distributions for the unknown parameters contained in the proposed software reliability growth model. Some numerical examples are presented for the purpose of comparing the optimal software release policies depending on the choice of parameters by the non-Bayesian and Bayesian methods.