The search functionality is under construction.

Author Search Result

[Author] Hiroaki KIKUCHI(13hit)

1-13hit
  • Time Zone Correlation Analysis of Malware/Bot Downloads

    Khamphao SISAAT  Hiroaki KIKUCHI  Shunji MATSUO  Masato TERADA  Masashi FUJIWARA  Surin KITTITORNKUN  

     
    PAPER

      Vol:
    E96-B No:7
      Page(s):
    1753-1763

    A botnet attacks any Victim Hosts via the multiple Command and Control (C&C) Servers, which are controlled by a botmaster. This makes it more difficult to detect the botnet attacks and harder to trace the source country of the botmaster due to the lack of the logged data about the attacks. To locate the C&C Servers during malware/bot downloading phase, we have analyzed the source IP addresses of downloads to more than 90 independent Honeypots in Japan in the CCC (Cyber Clean Center) dataset 2010 comprising over 1 million data records and almost 1 thousand malware names. Based on GeoIP services, a Time Zone Correlation model has been proposed to determine the correlation coefficient between bot downloads from Japan and other source countries. We found a strong correlation between active malware/bot downloads and time zone of the C&C Servers. As a result, our model confirms that malware/bot downloads are synchronized with time zone (country) of the corresponding C&C Servers so that the botmaster can be possibly traced.

  • Certificate Revocation Protocol Using k-Ary Hash Tree

    Hiroaki KIKUCHI  Kensuke ABE  Shohachiro NAKANISHI  

     
    PAPER-Internet Architecture

      Vol:
    E84-B No:8
      Page(s):
    2026-2032

    Certificate Revocation is a critical issue for a practical, public-key infrastructure. A new efficient revocation protocol using a one-way hash tree structure (instead of the classical list structure, which is known as a standard for revocation), was proposed and examined to reduce communication and computation costs. In this paper, we analysis a k-ary hash tree for certificate revocation and prove that k = 2 minimizes communication cost.

  • Multiparty Computation from El Gamal/Paillier Conversion

    Koji CHIDA  Hiroaki KIKUCHI  Keiichi HIROTA  Gembu MOROHASHI  

     
    PAPER-Secure Protocol

      Vol:
    E92-A No:1
      Page(s):
    137-146

    We propose a protocol for converting the encryption function of a ciphertext into another encryption function while keeping the corresponding message secret. The proposed protocol allows conversions of the El Gamal and Paillier cryptosystems and has the potential to design an efficient multiparty protocol intended for circuits consisting of arithmetic and logical operations. We clarify the condition of circuits such that the multiparty protocol based on the proposed protocol provides better performance than previous approaches. In addition, we introduce some privacy-preserving statistical computations as an effective application of the proposed protocol.

  • Identification of P-Fuzzy Switching Functions

    Hiroaki KIKUCHI  Masao MUKAIDONO  

     
    PAPER-Artificial Intelligence and Knowledge

      Vol:
    E78-A No:7
      Page(s):
    860-868

    A P-Fuzzy Switching Function is a meaningful class of fuzzy switching functions that is representable by a logic formula consisting of prime implicants. This paper aima at extracting knowledge represented as prime implicants from a given learning data. The main results are the necessary and sufficient conditions for the learning data to be representable with P-fuzzy switching functions, and to be determined by unique logic formula.

  • Analysis on the Sequential Behavior of Malware Attacks

    Nur Rohman ROSYID  Masayuki OHRUI  Hiroaki KIKUCHI  Pitikhate SOORAKSA  Masato TERADA  

     
    PAPER

      Vol:
    E94-D No:11
      Page(s):
    2139-2149

    Overcoming the highly organized and coordinated malware threats by botnets on the Internet is becoming increasingly difficult. A honeypot is a powerful tool for observing and catching malware and virulent activity in Internet traffic. Because botnets use systematic attack methods, the sequences of malware downloaded by honeypots have particular forms of coordinated pattern. This paper aims to discover new frequent sequential attack patterns in malware automatically. One problem is the difficulty in identifying particular patterns from full yearlong logs because the dataset is too large for individual investigations. This paper proposes the use of a data-mining algorithm to overcome this problem. We implement the PrefixSpan algorithm to analyze malware-attack logs and then show some experimental results. Analysis of these results indicates that botnet attacks can be characterized either by the download times or by the source addresses of the bots. Finally, we use entropy analysis to reveal how frequent sequential patterns are involved in coordinated attacks.

  • Multi-Bit Embedding in Asymmetric Digital Watermarking without Exposing Secret Information

    Mitsuo OKADA  Hiroaki KIKUCHI  Yasuo OKABE  

     
    PAPER-Watermarking

      Vol:
    E91-D No:5
      Page(s):
    1348-1358

    A new method of multi-bit embedding based on a protocol of secure asymmetric digital watermarking detection is proposed. Secure watermark detection has been achieved by means of allowing watermark verifier to detect a message without any secret information exposed in extraction process. Our methodology is based on an asymmetric property of a watermark algorithm which hybridizes a statistical watermark algorithm and a public-key algorithm. In 2004, Furukawa proposed a secure watermark detection scheme using patchwork watermarking and Paillier encryption, but the feasibility had not tested in his work. We have examined it and have shown that it has a drawback in heavy overhead in processing time. We overcome the issue by replacing the cryptosystem with the modified El Gamal encryption and improve performance in processing time. We have developed software implementation for both methods and have measured effective performance. The obtained result shows that the performance of our method is better than Frukawa's method under most of practical conditions. In our method, multiple bits can be embedded by assigning distinct generators in each bit, while the embedding algorithm of Frukawa's method assumes a single-bit message. This strongly enhances capability of multi-bit information embedding, and also improves communication and computation cost.

  • (M+1)st-Price Auction Protocol

    Hiroaki KIKUCHI  

     
    PAPER-Information Security

      Vol:
    E85-A No:3
      Page(s):
    676-683

    This paper presents some new protocols for (M+1)st-price auction, a style of auction in which the highest M bidders win and pay a uniform price, determined by the (M+1)st price. A set of distributed servers collaborates to resolve the (M+1)st price without revealing any information in terms of bids including the winners' bids. A new trick to jointly and securely compute the highest value as a degree of distributed polynomials is introduced. The building block requires just one round for bidders to cast bids and one round for auctioneers to determine the winners.

  • Secure Multiparty Computation for Comparator Networks

    Gembu MOROHASHI  Koji CHIDA  Keiichi HIROTA  Hiroaki KIKUCHI  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2349-2355

    We propose a multiparty protocol for comparator networks which are used to compute various functions in statistical analysis, such as the maximum, minimum, median, and quartiles, for example, through sorting and searching. In the protocol, all values which are inputted to a comparator network and all intermediate outputs are kept secret assuming the presence of an honest majority. We also introduce an application of the protocol for a secure (M+1)-st price auction.

  • Scalable Privacy-Preserving Data Mining with Asynchronously Partitioned Datasets

    Hiroaki KIKUCHI  Daisuke KAGAWA  Anirban BASU  Kazuhiko ISHII  Masayuki TERADA  Sadayuki HONGO  

     
    PAPER-Public Key Based Protocols

      Vol:
    E96-A No:1
      Page(s):
    111-120

    In the Naive Bayes classification problem using a vertically partitioned dataset, the conventional scheme to preserve privacy of each partition uses a secure scalar product and is based on the assumption that the data is synchronized amongst common unique identities. In this paper, we attempt to discard this assumption in order to develop a more efficient and secure scheme to perform classification with minimal disclosure of private data. Our proposed scheme is based on the work by Vaidya and Clifton [2], which uses commutative encryption to perform secure set intersection so that the parties with access to the individual partitions have no knowledge of the intersection. The evaluations presented in this paper are based on experimental results, which show that our proposed protocol scales well with large sparse datasets*.

  • Multi-Round Anonymous Auction Protocols

    Hiroaki KIKUCHI  Michael HAKAVY  Doug TYGAR  

     
    PAPER

      Vol:
    E82-D No:4
      Page(s):
    769-777

    Auctions are a critical element of the electronic commerce infrastructure. But for real-time applications, auctions are a potential problem - they can cause significant time delays. Thus, for most real-time applications, sealed-bid auctions are recommended. But how do we handle tie-breaking in sealed-bid auctions? This paper analyzes the use of multi-round auctions where the winners from an auction round participate in a subsequent tie-breaking second auction round. We perform this analysis over the classical first-price sealed-bid auction that has been modified to provide full anonymity. We analyze the expected number of rounds and optimal values to minimize communication costs.

  • Privacy-Preserving Decision Tree Learning with Boolean Target Class

    Hiroaki KIKUCHI  Kouichi ITOH  Mebae USHIDA  Hiroshi TSUDA  Yuji YAMAOKA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:11
      Page(s):
    2291-2300

    This paper studies a privacy-preserving decision tree learning protocol (PPDT) for vertically partitioned datasets. In vertically partitioned datasets, a single class (target) attribute is shared by both parities or carefully treated by either party in existing studies. The proposed scheme allows both parties to have independent class attributes in a secure way and to combine multiple class attributes in arbitrary boolean function, which gives parties some flexibility in data-mining. Our proposed PPDT protocol reduces the CPU-intensive computation of logarithms by approximating with a piecewise linear function defined by light-weight fundamental operations of addition and constant multiplication so that information gain for attributes can be evaluated in a secure function evaluation scheme. Using the UCI Machine Learning dataset and a synthesized dataset, the proposed protocol is evaluated in terms of its accuracy and the sizes of trees*.

  • Study on Record Linkage of Anonymizied Data

    Hiroaki KIKUCHI  Takayasu YAMAGUCHI  Koki HAMADA  Yuji YAMAOKA  Hidenobu OGURI  Jun SAKUMA  

     
    INVITED PAPER

      Vol:
    E101-A No:1
      Page(s):
    19-28

    Data anonymization is required before a big-data business can run effectively without compromising the privacy of personal information it uses. It is not trivial to choose the best algorithm to anonymize some given data securely for a given purpose. In accurately assessing the risk of data being compromised, there needs to be a balance between utility and security. Therefore, using common pseudo microdata, we propose a competition for the best anonymization and re-identification algorithm. The paper reported the result of the competition and the analysis on the effective of anonymization technique. The competition result reveals that there is a tradeoff between utility and security, and 20.9% records were re-identified in average.

  • FOREWORD Open Access

    Hiroaki KIKUCHI  

     
    FOREWORD

      Vol:
    E93-D No:5
      Page(s):
    1018-1019