The search functionality is under construction.

Author Search Result

[Author] Hiroki KAWAKAMI(2hit)

1-2hit
  • A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs

    Hiroki KAWAKAMI  Hirohisa WATANABE  Keisuke SUGIURA  Hiroki MATSUTANI  

     
    PAPER-Computer System

      Pubricized:
    2023/04/05
      Vol:
    E106-D No:7
      Page(s):
    1186-1197

    High-performance deep neural network (DNN)-based systems are in high demand in edge environments. Due to its high computational complexity, it is challenging to deploy DNNs on edge devices with strict limitations on computational resources. In this paper, we derive a compact while highly-accurate DNN model, termed dsODENet, by combining recently-proposed parameter reduction techniques: Neural ODE (Ordinary Differential Equation) and DSC (Depthwise Separable Convolution). Neural ODE exploits a similarity between ResNet and ODE, and shares most of weight parameters among multiple layers, which greatly reduces the memory consumption. We apply dsODENet to a domain adaptation as a practical use case with image classification datasets. We also propose a resource-efficient FPGA-based design for dsODENet, where all the parameters and feature maps except for pre- and post-processing layers can be mapped onto on-chip memories. It is implemented on Xilinx ZCU104 board and evaluated in terms of domain adaptation accuracy, inference speed, FPGA resource utilization, and speedup rate compared to a software counterpart. The results demonstrate that dsODENet achieves comparable or slightly better domain adaptation accuracy compared to our baseline Neural ODE implementation, while the total parameter size without pre- and post-processing layers is reduced by 54.2% to 79.8%. Our FPGA implementation accelerates the inference speed by 23.8 times.

  • Federated Learning of Neural ODE Models with Different Iteration Counts Open Access

    Yuto HOSHINO  Hiroki KAWAKAMI  Hiroki MATSUTANI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/02/09
      Vol:
    E107-D No:6
      Page(s):
    781-791

    Federated learning is a distributed machine learning approach in which clients train models locally with their own data and upload them to a server so that their trained results are shared between them without uploading raw data to the server. There are some challenges in federated learning, such as communication size reduction and client heterogeneity. The former can mitigate the communication overheads, and the latter can allow the clients to choose proper models depending on their available compute resources. To address these challenges, in this paper, we utilize Neural ODE based models for federated learning. The proposed flexible federated learning approach can reduce the communication size while aggregating models with different iteration counts or depths. Our contribution is that we experimentally demonstrate that the proposed federated learning can aggregate models with different iteration counts or depths. It is compared with a different federated learning approach in terms of the accuracy. Furthermore, we show that our approach can reduce communication size by up to 89.4% compared with a baseline ResNet model using CIFAR-10 dataset.