The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hirohisa WATANABE(2hit)

1-2hit
  • Anomaly Prediction for Wind Turbines Using an Autoencoder Based on Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroto ICHIKAWA  Hirohisa WATANABE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/07
      Vol:
    E104-D No:9
      Page(s):
    1506-1509

    Predicting the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation business. Machine learning methods have been studied using condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data, to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques have attracted significant interest in the detection or prediction of anomalies through unsupervised learning, in which the anomaly pattern is unknown. Although autoencoder-based techniques have been proven to detect anomalies effectively using relatively stable SCADA data, they perform poorly in the case of deteriorated SCADA data. In this letter, we propose a power-curve filtering method, which is a preprocessing technique used before the application of an autoencoder-based technique, to mitigate the dirtiness of SCADA data and improve the prediction performance of wind turbine degradation. We have evaluated its performance using SCADA data obtained from a real wind-farm.

  • A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs

    Hiroki KAWAKAMI  Hirohisa WATANABE  Keisuke SUGIURA  Hiroki MATSUTANI  

     
    PAPER-Computer System

      Pubricized:
    2023/04/05
      Vol:
    E106-D No:7
      Page(s):
    1186-1197

    High-performance deep neural network (DNN)-based systems are in high demand in edge environments. Due to its high computational complexity, it is challenging to deploy DNNs on edge devices with strict limitations on computational resources. In this paper, we derive a compact while highly-accurate DNN model, termed dsODENet, by combining recently-proposed parameter reduction techniques: Neural ODE (Ordinary Differential Equation) and DSC (Depthwise Separable Convolution). Neural ODE exploits a similarity between ResNet and ODE, and shares most of weight parameters among multiple layers, which greatly reduces the memory consumption. We apply dsODENet to a domain adaptation as a practical use case with image classification datasets. We also propose a resource-efficient FPGA-based design for dsODENet, where all the parameters and feature maps except for pre- and post-processing layers can be mapped onto on-chip memories. It is implemented on Xilinx ZCU104 board and evaluated in terms of domain adaptation accuracy, inference speed, FPGA resource utilization, and speedup rate compared to a software counterpart. The results demonstrate that dsODENet achieves comparable or slightly better domain adaptation accuracy compared to our baseline Neural ODE implementation, while the total parameter size without pre- and post-processing layers is reduced by 54.2% to 79.8%. Our FPGA implementation accelerates the inference speed by 23.8 times.