1-4hit |
Hirofumi WADA Setsuo YAMAMOTO Hiroki KURISU Mitsuru MATSUURA
A reactive sputtering method using an Electron-Cyclotron-Resonance (ECR) microwave plasma was used to deposit Ni-Zn ferrite thin-films for a soft magnetic backlayer of Co-containing spinel ferrite thin-film perpendicular magnetic recording (PMR) media. The Ni-Zn spinel ferrite thin-films with a preferential orientation of (100) and a relatively low coercivity of 15 Oe were obtained at a high deposition rate of 14 nm/min and at a temperature below 200 degrees C. Although post-annealing treatment in air at 200 degrees C was effective to decrease the coercivity of the Ni-Zn ferrite thin-films, the saturation magnetization and initial permeability decreased and the surface smoothness was deteriorated simultaneously. The Ni-Zn ferrite thin-films prepared by ECR sputtering are promising as the backlayer of the perpendicular magnetic recording medium, but further improvement is required in terms of the soft magnetic properties, the grain size and the surface roughness.
Setsuo YAMAMOTO Kei HIRATA Hiroki KURISU Mitsuru MATSUURA Takanori DOI Kousaku TAMARI
Co-containing ferrite thin-film media deposited by a reactive-ECR-sputtering at a low substrate temperature of 150 degree Celsius were oxidized by ECR plasma. The magnetic properties and recording characteristics of the media were improved by the oxidation with maintaining a smooth surface. The media showed high D50 of 203 kFRPI in MIG head recording and reproduction. The Co-containing ferrite thin-film is feasible to be used as a protective overcoat layer.
Setsuo YAMAMOTO Hirofumi KUNIKI Hiroki KURISU Mitsuru MATSUURA
Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered perpendicular media were prepared using reactive ECR sputtering and magnetron sputtering methods, and their magnetic and structural properties and recording characteristics were studied. The Mn-Zn ferrite thin-film backlayer had saturation magnetization of 3.5 kG and coercivity of 60 Oe. Reproduced voltage for the Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered medium was about twice of that for the Co-containing ferrite single-layer medium.
Setsuo YAMAMOTO Kei HIRATA Hiroki KURISU Mitsuru MATSUURA Takanori DOI Kousaku TAMARI
Employing reactive sputtering using an electron-cyclotron-resonance microwave plasma without oxidation process, high coercivity ferrite thin-films with perpendicular magnetic anisotropy were successfully prepared without NiO underlayer at low substrate temperature. The ferrite thin-film deposited on glass substrate had smooth surface and were composed of small grains. Perpendicular recording was performed on the ferrite thin-film hard disk. The ferrite thin-films with high coercivity could be prepared on flexible film substrates (Polyimide and PET).