The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiroki MATSUDA(4hit)

1-4hit
  • Recent Advances in Single-Carrier Frequency-Domain Equalization and Distributed Antenna Network

    Fumiyuki ADACHI  Kazuki TAKEDA  Tatsunori OBARA  Tetsuya YAMAMOTO  Hiroki MATSUDA  

     
    INVITED PAPER

      Vol:
    E93-A No:11
      Page(s):
    2201-2211

    Broadband wireless technology that enables a variety of gigabit-per-second class data services is a requirement in future wireless communication systems. Broadband wireless channels become extremely frequency-selective and cause severe inter-symbol interference (ISI). Furthermore, the average received signal power changes in a random manner because of the shadowing and distance-dependant path losses resulted from the movement of a mobile terminal (MT). Accordingly, the transmission performance severely degrades. To overcome the performance degradation, two most promising approaches are the frequency-domain equalization (FDE) and distributed antenna network (DAN). The former takes advantage of channel frequency-selectivity to obtain the frequency-diversity gain. In DAN, a group of distributed antennas serve each user to mitigate the negative impact of shadowing and path losses. This article will introduce the recent advances in FDE and DAN for the broadband single-carrier (SC) transmissions.

  • Joint Water Filling-MRT Downlink Transmit Diversity for a Broadband Single-Carrier Distributed Antenna Network

    Hiroki MATSUDA  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2753-2760

    In this paper, joint water filling and maximal ratio transmission (joint WF-MRT) downlink transmit diversity for a single-carrier distributed antenna network (SC DAN) is proposed. The joint WF-MRT transmit weight allocates the transmit power in both transmit antenna dimension and frequency dimension, i.e., the power allocation is done both across frequencies based on WF theorem and across transmit antennas based on MRT strategy. The cumulative distribution function (CDF) of the channel capacity achievable by joint WF-MRT transmit diversity is evaluated by Monte-Carlo numerical computation method. The channel capacities achievable with joint WF-MRT, MRT, and WF transmit weight (WF transmit weight is done across transmit antennas and frequencies based on WF theorem) are compared. It is shown that the joint WF-MRT transmit weight provides the highest channel capacity among three transmit weights.

  • RF Performance of Diamond Surface-Channel Field-Effect Transistors

    Hitoshi UMEZAWA  Shingo MIYAMOTO  Hiroki MATSUDAIRA  Hiroaki ISHIZAKA  Kwang-Soup SONG  Minoru TACHIKI  Hiroshi KAWARADA  

     
    INVITED PAPER

      Vol:
    E86-C No:10
      Page(s):
    1949-1954

    RF diamond FETs have been realized on a hydrogen-terminated diamond surface conductive layer. By utilizing the self-aligned gate fabrication process which is effective for the reduction of the parasitic resistance, the transconductance of diamond FETs has been greatly improved. Consequently, the high frequency operation of 22 GHz has been realized in 0.2 µ m gate diamond MISFETs with a CaF2 gate insulator. This value is the highest in diamond FETs and is comparable to the maximum value of SiC MESFETs at present.

  • Expanded Precoding Index Modulation for MIMO System

    Yasunori NIN  Yukitoshi SANADA  Ryota KIMURA  Hiroki MATSUDA  Ryo SAWAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/05
      Vol:
    E102-B No:4
      Page(s):
    921-929

    Index modulation (IM) is receiving attention because of its high energy efficiency. In precoding index modulation (PIM), some of the data bits are used for the modulation of symbols and the rest are used for the selection of precoding coefficients. In conventional PIM, the precoding matrices are orthogonal and unitary. In the proposed PIM, the number of the columns of the precoding matrix is expanded more than that of the rows. Because of the expanded precoding matrices, the number of data bits used for the selection of precoding coefficients is increased. As a result, a code rate can be reduced compared to that of the conventional PIM and the number of candidate constellation points for demodulation can be decreased as compared to that of a multiple-input multiple-output MIMO system under the same throughput. Numerical results obtained through computer simulation show that the proposed PIM with QPSK symbols improves the performance by about 2.5dB at a bit error rate of 10-3 as compared to overloaded MIMO with 16QAM symbols for two transmit antennas and one receive antenna. It also achieves about 3.5dB better performance than the conventional PIM under the same antenna condition. Furthermore, the optimum number of index modulation bits is found by the simulation for the proposed PIM. In addition, the PIM scheme reduces demodulation complexity by a factor of 32 as compared to that of the MIMO under specific modulation parameters.