The search functionality is under construction.

Author Search Result

[Author] Hironari MASUI(10hit)

1-10hit
  • Validation of Equivalent Received Bandwidth to Characterize Received Signal Level Distribution through Experiment and Simulation

    Hiroaki NAKABAYASHI  Jiang YAN  Hironari MASUI  Masanori ISHII  Kozo SAKAWA  Hiroyuki SHIMIZU  Takehiko KOBAYASHI  Shigeru KOZONO  

     
    PAPER-Propagation

      Vol:
    E84-B No:9
      Page(s):
    2550-2559

    To generalize characteristics of a received signal level distribution from narrow- to wide-bands in a mobile radio channel, a new propagation parameter called equivalent received bandwidth (2ΔfΔLmax) has been proposed. The distributions are discussed mainly with computer simulation results. The simulation results shows the level distribution depends on 2ΔfΔLmax and power ratio a of direct to indirect waves, and the value of 2ΔfΔLmax classifies the radio channel as narrow- or wide-bands transmission. To confirm these simulated results, a field test was performed with a 3.35 GHz radio wave. This paper describes that the field test demonstrated the simulation results. It is concluded that the equation representing received signal level in the computer simulation is valid. And the fading depth depends directly on 2ΔfΔLmax, and the 2ΔfΔLmax is effective for generalizing the received signal level distribution. Furthermore, a method for calculating the power ratio was found to be better for a peak level model.

  • Microwave Propagation Characteristics in an Urban Quasi Line-of-Sight Environment under Different Traffic Conditions

    Hironari MASUI  Masanori ISHII  Satoshi TAKAHASHI  Hiroyuki SHIMIZU  Takehiko KOBAYASHI  Masami AKAIKE  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:5
      Page(s):
    1431-1439

    Signal path loss and propagation delay spread were measured at microwave frequencies of 3.35, 8.45, and 15.75 GHz along a straight quasi line-of-sight (LOS) street in an urban environment under different traffic conditions: daytime and nighttime. Comparison between daytime and nighttime measurements reveals that the break points shift toward the base station because of the increase in the effective heights of the road and sidewalk; break points were not seen during the daytime at a mobile antenna height (hm) of 1.6 m. According to the cumulative probabilities of the delay spreads during the nighttime, frequency dependence is not clearly observed and the delay spreads for hm = 1.6 m were clearly larger than those for hm = 2.7 m. This is because a lower hm results in stronger blocking of the LOS wave, as was also observed during the daytime. The plot of path losses versus delay spreads is confirmed to be represented by an exponential curve. The exponential coefficients during the daytime were observed to be greater than those during the nighttime. This indicates that a LOS wave is more likely to be blocked during the daytime.

  • Stochastic Prediction of Transmission Performance in Mobile Communication Systems Employing Anti-Multipath Techniques in Urban Propagation Environments

    Satoshi TAKAHASHI  Takehiko KOBAYASHI  Kouzou KAGE  Koichi TAKAHASHI  Hironari MASUI  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1987-1996

    This paper describes a method of predicting transmission performance to be obtained by applying RAKE reception and parallel transmission in realistic urban multipath environments. Delay profiles measured in metropolitan Tokyo at microwave frequencies were used to obtain the impulse responses of radio channels, and the closed-form equations corresponding to the performance of these anti-multipath techniques were derived, by means of the characteristic function method, under the assumption that the phases of the impulse responses are uniformly distributed. Results show that RAKE reception provides bit error rates 100 times lower than bare transmission does, whereas the improvement obtained by using parallel transmission should be especially valuable in broadband communication systems, such as those operating at data rates above 10 Mb/s.

  • Delay Profile Measurement System for Microwave Broadband Transmission and Analysis of Delay Characteristics in an Urban Environment

    Hironari MASUI  Koichi TAKAHASHI  Satoshi TAKAHASHI  Kouzou KAGE  Takehiko KOBAYASHI  

     
    PAPER-Systems

      Vol:
    E82-C No:7
      Page(s):
    1287-1292

    There is currently a need for development of a new frequency band to enable creation of next-generation mobile communication systems. Of the potential bands, the 3 GHz and over microwave band holds the greatest promise. Experimental studies on the delay characteristics of multipath propagation must be conducted in order to achieve high-speed transmission in the microwave band. We have developed a system for measuring the microwave broadband propagation delay profile over 100 MHz spread bandwidths in the 3, 8 and 15 GHz bands. Our experiments confirmed system performances of 20-ns resolution, 40-µs maximum measurable delay, relative amplitude error of within 3 dB and dynamic range of over 60 dB. We used our system to measure delay profiles on an urban area with line of sight, particularly, in terms of the effects of mobile antenna height. Typical examples are presented. Analysis showed that delay spreads increased with transmit/receive distance and decreased with the higher antenna height.

  • LOS and NLOS Path-Loss and Delay Characteristics at 3.35 GHz in a Residential Environment

    Hiroyuki SHIMIZU  Hironari MASUI  Masanori ISHII  Kozo SAKAWA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E83-A No:7
      Page(s):
    1356-1364

    Path loss and delay profile characteristics of the 3-GHz band are measured and compared for line-of-sight (LOS) and non-line-of-sight (NLOS) paths in a suburban residential area. For the LOS path, the path loss increases as a function of distance squared; and hence the propagation is considered as the free space propagation. For the NLOS paths, it is found that corner losses occur ranging from 28 to 40 dB, and subsequent losses increase as a function of distance squared, but in case of there are open spaces, spaces between the rows of houses or roads intersecting LOS road, the increase was small. The delay spread for the LOS path increased in proportion to power of the distance; and the exponents ranging from 1.9 to 2.9 is found smaller than in urban areas. The delay spreads for the NLOS paths were several times greater than that for the LOS path, and the rate of delay spread increase with distance was found to be several orders of magnitude greater for NLOS paths than the LOS path.

  • Non Line-of-Sight Microwave Propagation Characterization for Personal Communications with High-Tier Base Station Antenna

    Kozo SAKAWA  Hironari MASUI  Masanori ISHII  Hiroyuki SHIMIZU  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1569-1577

    We have measured the non line-of-sight (NLOS) propagation characteristics of microwave frequencies in an urban environment with a base station antenna situated well above the surrounding buildings. When these characteristics are compared with the results of measurements made in the same environment with a low base station antenna height, it can be seen that with a low base station antenna height the attenuation coefficient varies greatly between line-of-sight (LOS) and NLOS environments, whereas with a high base station antenna height there is no variation of this sort. This is because the waves arriving NLOS environments from a high base station antenna do so primarily as a result of rooftop diffraction, and the path loss does not vary much over regions of equal distance between the base station and mobile station. We have confirmed that the frequency characteristics of relative loss in NLOS environments with a high antenna height follow a relationship of 22.8 log f, which is more or less the same as the characteristic for the UHF band. By modifying the frequency terms of the Sakagami model (used for UHF band) based on this trend to allow it to handle microwave frequencies, a close correspondence is seen between the results of actual measurements and the values predicted by the extended model.

  • Path Loss Modeling of Line-of-Sight Microwave Urban Propagation with Low-Height Antenna Mobile Stations

    Koichi TAKAHASHI  Hironari MASUI  Satoshi TAKAHASHI  Kouzou KAGE  Takehiko KOBAYASHI  

     
    LETTER

      Vol:
    E82-C No:7
      Page(s):
    1330-1333

    A model that combines free-space loss (proportional to the square of distance d) and excess loss has been known to assess the microwave line-of-sight (LOS) path loss in street microcell environments. The excess loss represents the effects of shadowing obstacles. We measure the path loss at the 3.35, 8.45, and 15.75 GHz frequencies in an urban environment, and analyze the distance characteristics of the pass loss for mobile antenna heights of 2.7, 1.6, and 0.5 m. Results show that using a new model that bases on a dα formula instead of d2 in the conventional model produced a better fit to the measured data. They also show that lowering the mobile antenna to a height of 0. 5 m made it possible to virtually ignore the excess loss factor and, instead, use the dα formula to assess the path loss characteristics.

  • Effects of Road Traffic on Probability Distributions of Path-Loss in an Urban Microcellular Environment

    Hiroyuki SHIMIZU  Hironari MASUI  Masanori ISHII  Kozo SAKAWA  Takehiko KOBAYASHI  Makoto ABO  Chikao NAGASAWA  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1578-1584

    We investigate the relationship between microwave path-loss characteristics and line-of-sight (LOS) blocking in an urban environment with a low base-station antenna using LOS-blocking measurement equipment that we have developed. Changes in path loss, traffic conditions, and LOS-blocking caused by vehicles were measured simultaneously. It was found that path loss exhibits a Rayleigh distribution even in a LOS environment if the amount of traffic is such that LOS- blocking occurs for 80% of the time or more, but the other case path loss exhibits a Nakagami-Rice distribution. It was also found that ratio of coherent wave level to envelope level (c/r) depends heavily on rate of road traffic flow.

  • Distance Dependence of Microwave Delay Spreads Measured in Urban Quasi Line-of-Sight Environments

    Hironari MASUI  Koichi TAKAHASHI  Satoshi TAKAHASHI  Kouzou KAGE  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1997-2003

    Measurements of delay spread were performed at microwave frequencies of 3.35, 8.45 and 15.75 GHz along quasi line-of-sight streets in metropolitan Tokyo. It is found that the delay spreads increase with the measurement distance and reach around 600 ns up to 1 km. It is also confirmed that a cumulative probability of the delay spreads follows a log-normal distribution. The gradients of delay spreads against the distance are greater for a lower mobile antenna height hm = 1.6 m than for hm = 2.7 m in these measurements because of blocking effect by the traffic of vehicles and pedestrians on the road. When the mobile antenna height is 2.7 m, the delay spreads within the range before the break points are observed relatively small: 90 ns (3.35 GHz), 140 ns (8.45 GHz) and 150 ns (15.75 GHz) at the cumulative probability of 90%. The gradients of delay spreads against the distance are greater for wider streets in our measurements.

  • Difference of Path-Loss Characteristics due to Mobile Antenna Heights in Microwave Urban Propagation

    Hironari MASUI  Koichi TAKAHASHI  Satoshi TAKAHASHI  Kouzou KAGE  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E82-A No:7
      Page(s):
    1144-1150

    This paper discusses microwave path-loss characteristics as a function of mobile antenna height in an urban line-of-sight environment. Measurements were made in metropolitan Tokyo with high-density buildings, using base station antenna heights of 4 and 8 m. We describe the path-loss characteristics of vehicle-mounted mode (mobile antenna height is 2.7 m) and portable mode (mobile antenna heights are 1.6 and 0.5 m). Dependence of path loss on the distance between base and mobile stations was analyzed. This reveals that the break points shift to the near side in the vehicle-mounted mode. This phenomenon can be interpreted by the existence of an effective height h of the road. The typical value of h was found approximately 1.4 m. In the portable mode, on the other hand, break points were not observed. The mobile antenna heights (1.6 and 0.5 m) in this mode are close to or less than the average height (1-2 m) of pedestrians on the sidewalk; and the received waves at the mobile station are often disturbed by pedestrians. This explains the nonexistence of break points in portable mode. The average attenuation coefficients is observed 3.2 in this mode. The attenuation coefficients tend to be larger at lower base station antenna heights and narrower road widths.