Miyuki HIROSE Takehiko KOBAYASHI
This paper presents an experimental study of on-body ultra-wideband (UWB) radio propagation channels within an enclosed space. To facilitate high-speed wireless body area networks, UWB is a promising technology because of its low power consumption and anti-multipath capabilities. The motivation of this study is to examine the effects of nearby humans on the UWB channels by varying the population within an elevator cabin from one (subject alone) to 20 (full capacity of the elevator). The first domain (0 < delay, t ≤ 4ns) in the measured delay profiles was either a direct (for line-of-sight) or diffracted (for non-line-of-sight) wave, which was found almost unrelated to the population; whereas the second domain (t > 4ns) highly depended on it. Total received power and delay spreads decreased with increasing the population. In addition, by varying human population, average power delay profiles were modeled based on measurements.
Yuzo TAMAKI Takehiko KOBAYASHI Atsushi TOMIKI
Precise determination of antenna phase centers is crucial to reduce the uncertainty in gain when employing the three-antenna method, particularly when the range distances are short-such as a 3-m radio anechoic chamber, where the distance between the phase centers and the open ends of an aperture antenna (the most commonly-used reference) is not negligible compared with the propagation distance. An automatic system to determine the phase centers of aperture antennas in a radio anechoic chamber is developed. In addition, the absolute gain of horn antennas is evaluated using the three-antenna method. The phase centers of X-band pyramidal horns were found to migrate up to 18mm from the open end. Uncertainties in the gain were evaluated in accordance with ISO/IEC Guide 93-3: 2008. The 95% confidence interval of the horn antenna gain was reduced from 0.57 to 0.25dB, when using the phase center location instead of the open end. The phase centers, gains, polarization, and radiation patterns of space-borne antennas are measured: low and medium-gain X-band antennas for an ultra small deep space probe employing the polarization pattern method with use of the horn antenna. The 95% confidence interval in the antenna gain decreased from 0.74 to 0.47dB.
Yasuhiro OHHIKATA Takehiko KOBAYASHI
This paper proposes a new method which simultaneously undertakes ranging and communications based on the PHY of MB-OFDM technology. A transmitter modulated one or multiple OFDM subcarriers with a low-frequency (1.05 MHz) ranging signal; and a receiver sampled the received signal at a 3.2-MHz sampling rate to estimate the time of arrival of the ranging signal. This configuration and an additional protocol supporting bidirectional ranging achieved a 140-mm resolution (equivalent to 2.15 GHz sampling). This method does not modify the PHY but only changes the baseband signal processing. The validity of this method was demonstrated using computer simulation and prototype experiments.
Hirotoshi HIDAKA Kazuyoshi SAITOH Noriteru SHINAGAWA Takehiko KOBAYASHI
The cellular-communication systems of the future will be required to provide multimedia services to users moving about in a variety of ways (on foot, in automobiles etc.). Different forms of motion have different characteristics. The characterization of the different forms of motion and their effects on telecommunications traffic is important in the planning, design and operation of mobile communication networks. The characterization of the motion of various platform types (inter-city buses, recreational vehicles, freight trucks, and taxis) based on measurements using Global Positioning System is presented in this paper. The measured characteristics of motion are then used to evaluate teletraffic statistics such as cell cross-over rate and cell dwell time by overlaying hypothetical cell systems on the measured loci of vehicles. Self-similarity was discovered in the cell dwell time characteristic of the taxis.
Naohiko IWAKIRI Takehiko KOBAYASHI
This paper presents an ultra wideband (UWB) channel sounding scheme with a technique for estimating time of arrival (TOA) and angle of arrival (AOA) using measurement signals. Since the power spectrum over the UWB bandwidth can be measured in advance, we propose a signal model using the measurement power spectrum to design the proper UWB signals model. This signal model is more similar to measurement signals than the flat spectrum model which is an ideal model. If more than three waves impinge on a receiver, we must determine the proper grouping of the elements of TOA vector and AOA vector. It is difficult to determine the grouping using only measurement signals because of many degradation factors. We also propose pairing the elements of TOA vector and that of AOA vector using correlation method based on measurement signals and the proposed signal model. This technique is available for more than the case of three paths if pairing the estimated TOAs and AOAs of measurement signals is not accurately determined. We evaluated the proposed techniques for a vector network analyzer (VNA) with a three-dimensional virtual antenna array.
Katsuyuki HANEDA Jun-ichi TAKADA Takehiko KOBAYASHI
This paper introduces the concept of measuring double directional channels in ultra wideband (UWB) systems. Antenna-independent channel data were derived by doing the measurements in a wooden Japanese house. The data were useful for investigating the impact of UWB antennas and analyzing waveform distortion. Up to 100 ray paths were extracted using the SAGE algorithm and they were regarded as being dominant. The paths were then identified in a real environment, in which clusterization analyses were done using the directional information on both sides of the radio link. Propagating power was found to be concentrated around the specular directions of reflection and diffraction. This led to the observation that the spatio-temporal characteristics of extracted paths greatly reflected the structure and size of the environment. The power in the clusters indicated that the estimated 100 paths contained 73% of the total received power, while the rest existed as diffuse scattering, i.e., the accumulation of weaker paths. The practical limits of path extraction with SAGE were also discussed. Finally, we derived the scattering loss and intra-cluster properties for each reflection order, which were crucial for channel reconstrucion based on the deterministic approach.
Masahiro ISHIBA Hideki SATOH Takehiko KOBAYASHI
To obtain a high throughput for transmission control protocol (TCP) connections over the wireless links, we previously proposed a novel transmission power control method for code division multiple access (CDMA) packet communication systems. By using this transmission power control method, we developed a transmission power control method and a packet multiplexing method to transmit constant bit rate (CBR) and TCP packets over CDMA wireless systems. Our methods can guarantee the quality of service (QoS) for CBR connections and utilize bandwidth effectively without modifying the TCP protocol or using slot assignments. Evaluation of our methods by computer simulation showed that the proposed methods provide a near-maximum throughput and guarantee the packet loss ratio of CBR connections regardless of the number of connections.
Noriteru SHINAGAWA Takehiko KOBAYASHI Keisuke NAKANO Masakazu SENGOKU
To implement soft handoff in cellular communication systems that employ code division multiple access (CDMA), it is necessary to establish communication lines between the switch and multiple base stations and distribute the communication data via these multi-connections to the base stations simultaneously. This means that, when soft handoff is performed with the same amount of communication line resources as hard handoff, the blocking probability is higher than for hard handoff, and service quality is thus worse. Furthermore, handoffs occur more frequently as the size of cells becomes smaller, and this increases the probability of forced terminations. Switches must be endowed with greater processing capacity to accommodate the more frequent handoffs. The use of the queuing handoff method can be expected, in general, to mitigate forced termination probability compared with the immediate handoff method. In this regard, we propose a prioritized queuing handoff method that gives priority to fast-moving mobile stations (MSs) as a way to mitigate forced terminations even more than the non-priority queuing method without appreciably increasing the processing load. We then compare the traffic characteristics of our proposed method with these of three other methods in micro cell systems--immediate method, non-priority queuing method, and conventional hard handoff method without multi-connections--by computer simulation. Here, considering that the proposed method gives priority to fast-moving calls, traffic characteristics for these methods were evaluated separately for slow- and fast-moving MSs. The results reveal that proposed method can reduce the forced termination probability and total call failure probability more than non-priority queuing method without having an appreciable impact on slow-moving calls.
Toshio NOJIMA Sadayuki NISHIKI Takehiko KOBAYASHI
An experimental SAR (Specific Absorption Rate) estimation system based upon the thermograph method using a thermograph camera and newly developed homogeneous dry-phantom human models are presented. Experiments are conducted using this system and UHF fields to obtain SAR distributions in the human head irradiated by hand-held portable radios. Experiment results show that the estimated peak SAR's due to the radiation waves from radios of 1W transmitting power are lower than 2W/kg and so conform to the recommendations of the radio-frequency radiation safety guidelines. The developed system enables the surface SAR distributions on the phantom model to be precisely estimated; a function not available with the original system. System parameters required for providing precise estimations are discussed first, and then experiments are conducted to estimate SAR's in the human head exposed to a UHF hand-held portable radio's near field. Finally, estimated data are examined from the viewpoint of radio-frequency exposure safety guidelines.
Yoshiyuki SUZUKI Takehiko KOBAYASHI
Short-range propagation measurements were carried out using ultra wideband (UWB) and continuous wave (CW) signals on a rectangular aluminum conductive plate, simulating typical office desks, with and without a low vertical metal partition panels. The frequency of the UWB signal spanned from 3.1 to 10.6 GHz and that of the CW signal was 6.85 GHz. A vector network analyzer and two omnidirectional UWB antennas were used to obtain the frequency-domain response of the propagation paths. With the partition panel, the CW reception level showed approximately a 20-dB spatial variation, induced by the interference between the direct and the reflected waves, but the UWB reception level had no particular plunges. The additional losses were also measured when the 500-mm propagation path was blocked with a human arm, a coffee cup, and a copy paper pile and when the receiving antenna was covered with a human palm on the plate without the partition panel. The maximum additional propagation losses were found as follows: 10-12 dB by a human arm, 10 dB with a coffee cup, and 2 dB with a paper pile. Further additional loss caused by a palm covering the antenna was found to be 10 to 12 dB, mainly due to palm absorption.
Houtao ZHU Jun-ichi TAKADA Kiyomichi ARAKI Takehiko KOBAYASHI
A proper design and analysis of future wideband wireless communication systems require an accurate radio channel model. This model is claimed to characterize both the spatial and temporal channel characteristics. This paper investigates the spatio-temporal channel modeling based on a ray-tracing approach. The temporal channels are characterized by a delay profile. The statistical median and fading-fluctuation range of delay profiles are predicted from ray tracing by incorporating the random phase approach. A high level of agreement between predicted results and measured ones is observed in the verification. The spatio-temporal channel impulse response (CIR) predicted from ray tracing is also transformed to have limited band-width and limited beam-width characteristics. The applicability of this transformation is also verified by the comparison with measurement. These verifications prepare the ground for the use of ray-tracing approaches to evaluate system performance in real environments.
Kozo SAKAWA Hironari MASUI Masanori ISHII Hiroyuki SHIMIZU Takehiko KOBAYASHI
We have measured the non line-of-sight (NLOS) propagation characteristics of microwave frequencies in an urban environment with a base station antenna situated well above the surrounding buildings. When these characteristics are compared with the results of measurements made in the same environment with a low base station antenna height, it can be seen that with a low base station antenna height the attenuation coefficient varies greatly between line-of-sight (LOS) and NLOS environments, whereas with a high base station antenna height there is no variation of this sort. This is because the waves arriving NLOS environments from a high base station antenna do so primarily as a result of rooftop diffraction, and the path loss does not vary much over regions of equal distance between the base station and mobile station. We have confirmed that the frequency characteristics of relative loss in NLOS environments with a high antenna height follow a relationship of 22.8 log f, which is more or less the same as the characteristic for the UHF band. By modifying the frequency terms of the Sakagami model (used for UHF band) based on this trend to allow it to handle microwave frequencies, a close correspondence is seen between the results of actual measurements and the values predicted by the extended model.
Naohiko IWAKIRI Takehiko KOBAYASHI
A multiband system can flexibly create spectral holes to avoid interference between different systems. When two systems within the same frequency band coexist, the multiband system must immediately detect the signals from all users to remove unwanted interference. The complication of creating spectral holes is to obtain an occupied frequency band and an angle-of-arrival of interfering system. These parameters must be measured at the receiver of multiband system and then fed back to the transmitter. This paper presents a channel estimator with an interference detector that is developed to implement and test it's functionality in a multiband system. The proposed estimator can precisely detect the parameters before demodulation, and quickly feed back the interfering system parameters to transmitter. The effective design and the detection error rate were evaluated via verification tests in an anechoic chamber and computer simulations. The results of the proposed technique show an ability of interference detection as well as channel estimation.
Hironobu YAMAMOTO Jian ZHOU Takehiko KOBAYASHI
Ultra wideband (UWB) technologies are expected to be used in ultra-high-speed wireless personal area networks (WPAN) and wireless body area networks (WBAN). UWB human electromagnetic phantoms are useful for performance evaluation of antennas mounted in the vicinity of a human body and channel assessment when a human body blocks a propagation path. Publications on UWB phantoms, however, have been limited so far. This paper describes the development of liquid UWB phantom material (aqueous solution of sucrose) and UWB arm and torso phantoms. The UWB phantoms are not intended to evaluate a specific absorption rate (SAR) in a human body, because UWB devices are supposed to transmit at very low power and thus should pose no human hazard.
Huan-Bang LI Kunio YATA Kenichi TAKIZAWA Noriaki MIYAZAKI Takashi OKADA Kohei OHNO Takuji MOCHIZUKI Eishin NAKAGAWA Takehiko KOBAYASHI
An ultra-wideband (UWB) system usually occupies a large frequency band, which may overlap with the spectrum of a narrow band system. The latter is referred to as a victim system. To effectively use frequency, a UWB system may create a notch in its spectrum to accommodate the victim signal for interference avoidance. Parameters of the notch such as the depth and the width of a notch need to be decided in accordance to victim systems. In this paper, we investigate the effective UWB avoidance by examining the suitable notch based on experimental evaluation. In the experiments, 3GPP LTE, Mobile WiMAX, as well as an IMT Advanced Test-bed are respectively employed to represent different types of victim systems. The UWB system is set up based on WiMedia specifications and operates at the UWB low band of 3.1–4.8 GHz. A notch is fabricated by nullifying the related subcarriers of the UWB signal. In addition, a filter or a window function is formed and employed to further smooth the notch. Bit error rate (BER) or packet error rate (PER) performances of victim systems are measured and used to evaluate the UWB interference. Our results show that when a notch is properly formed, the interference level introduced by UWB can be below the permitted level by regulations.
Koichi TAKAHASHI Hironari MASUI Satoshi TAKAHASHI Kouzou KAGE Takehiko KOBAYASHI
A model that combines free-space loss (proportional to the square of distance d) and excess loss has been known to assess the microwave line-of-sight (LOS) path loss in street microcell environments. The excess loss represents the effects of shadowing obstacles. We measure the path loss at the 3.35, 8.45, and 15.75 GHz frequencies in an urban environment, and analyze the distance characteristics of the pass loss for mobile antenna heights of 2.7, 1.6, and 0.5 m. Results show that using a new model that bases on a dα formula instead of d2 in the conventional model produced a better fit to the measured data. They also show that lowering the mobile antenna to a height of 0. 5 m made it possible to virtually ignore the excess loss factor and, instead, use the dα formula to assess the path loss characteristics.
Masaya NISHIO Noriteru SHINAGAWA Takehiko KOBAYASHI
Cell loss is one of the most important metrics of quality of service in ATM mobile communication systems. This loss can be suppressed by introducing buffer memories in the network, but that sacrifices delay. This paper proposes a lossless handover scheme for ATM mobile communication networks that can suppress delay fluctuations, and presents a subjective evaluation of MPEG2 images with various buffer memory sizes.
Kazuo MORI Takehiko KOBAYASHI Takaya YAMAZATO Akira OGAWA
This paper examines fairness of service in the up-link of CDMA cellular slotted-ALOHA packet communication systems with site diversity reception. Site diversity rescues the packets originating mainly from near the edge of the cells, whereas packets originating near the base stations can not obtain the benefits of diversity reception. This situation causes an unfairness in packet reception that depends on location of the mobile station. Two transmission control schemes for reducing this unfairness are proposed. In the first scheme, mobile stations control the target received power for the open-loop power control based on the reception level of the pilot signals of the surrounding base stations. In the second, mobile stations control transmit permission probability. Successful packet reception rate, fairness coefficient and throughput performance are evaluated in fading environments with imperfect power control. Computer simulation shows that both schemes improve service fairness for all mobile stations and throughput performances. A performance comparison between the two schemes concludes that transmission power control outperforms transmit permission probability control as a simple technique for maintaining fairness of services.