1-14hit |
This paper presents a novel decoding strategy called combined iterative demapping/decoding (CIDD), for coded M-ary biorthogonal keying-based direct sequence ultra-wideband (MBOK DS-UWB) systems. A coded MBOK DS-UWB system consists of a convolutional encoder, an interleaver, and an MBOK DS-UWB pulse mapper. CIDD improves the error rate performance of MBOK DS-UWB systems by applying the turbo principle to the demapping and decoding processes at the receiver side. To develop the CIDD, a soft-in/soft-out MBOK demapping algorithm, based on the max-log-MAP algorithm, was derived. Simulation results showed that using CIDD siginificantly improved the error rate performance of both static and multipath fading channels. It was also shown that the computational complexity of CIDD is comparable to that of the Viterbi decoding used in [133,171]8 conventional convolutional coding.
Kenichi TAKIZAWA Hirotaka YAMANE Huan-Bang LI Feng LU Kohei OHNO Takuji MOCHIZUKI Takashi OKADA Kunio YATA Hisashi NISHIKAWA Takehiko KOBAYASHI
The paper presents capability of signal detection for realizing coexistence between broadband wireless access (BWA) systems and ultra wideband (UWB) devices. The capability is experimentally evaluated for baseband signals of downlink (DL) in both mobile WiMAX and 3GPP LTE. An UWB receiver based on fast Fourier transform (FFT) compliant with MB-OFDM standard is implemented as a detector of the BWA signals. The capability is evaluated in terms of elapsed time required to achieve signal detection with probability of 99% by the implemented FFT-based UWB receiver at different conditions of the receiver. Decisions on the signal detection are made by the simplest method which is by setting a threshold which is determined by noise floor of the receiver as reference. The experiments have been conducted though baseband signals for both AWGN and multipath fading channels without any synchronization between the DL signals and UWB receiver. In AWGN environment, results show that the elapsed time depends on the duty ratio of the DL signal to be detected, however, the correlation between the required time and duty ratio is not linear since their envelopes of the DL signals are not constant. In multipath fading environments based on channel models commonly employed as mobile radio environments, the required time for the signal detection becomes as 17 times longer than that in AWGN due to its signal attenuation. For robust signal detection in multipath fading environments, it has been revealed that the number of quantization bits at ADC is crucial through the experiments.
Makoto HASEGAWA Tetsushi IKEGAMI Kenichi TAKIZAWA
In March, 2007, IEEE802.15.4a was standardized as a low-rate and low-power UWB system for sensor networks. In general, detection of the IEEE802.15.4a signal is considered to be difficult because of its low transmitting power density and low duty cycle. However, if detecting of the IEEE802.15.4a signal is available, it is possible to avoid interference issues both among the IEEE802.15.4a systems and between the 15.4a and other UWB systems. This letter proposes a simple detection method using non-coherent detectors. The possibility of detecting of the IEEE802.15.4a signal by proposal detection method was examined. By conducting experiments with an emulated 15.4a RF signal, the signal detection probability was examined, and 15.4a signal from the range of about 11 meters in the radius could be detected. From this observation, the CSMA/CA method with detecting the signal in 15.4a system may be applied for alternative access method for 15.4a systems.
Katsuhiro WATANABE Kenichi TAKIZAWA Tetsushi IKEGAMI
This paper proposes a joint source-channel coding technology to transmit periodic vital information such as an electrocardiogram. There is an urgent need for a ubiquitous medical treatment space in which personalized medical treatment is automatically provided based on measured vital information. To realize such treatment and reduce the constraints on the patient, wireless transmission of vital information from a sensor device to a data aggregator is essential. However, the vital information has to be correctly conveyed through wireless channels. In addition, sensor devices are constrained by their battery power. Thus, a coding technique that provides robustness to noise, channel efficiency and low power consumption at encoding is essential. This paper presents a coding method that uses correlation of periodic vital information in the time domain, and provides a decoding scheme that uses the correlation as side information in a maximum a posteriori probability algorithm. Our results show that the proposed method provides better performance in terms of mean squared error after decoding in comparison to differential pulse-code modulation, and the uncoded case.
Huan-Bang LI Kenichi TAKIZAWA Fumihide KOJIMA
Because of its high throughput potentiality on short-range communications and inherent superiority of high precision on ranging and localization, ultra-wideband (UWB) technology has been attracting attention continuously in research and development (R&D) as well as in commercialization. The first domestic regulation admitting indoor UWB in Japan was released by the Ministry of Internal Affairs and Communications (MIC) in 2006. Since then, several revisions have been made in conjunction with UWB commercial penetration, emerging new trends of industrial demands, and coexistence evaluation with other wireless systems. However, it was not until May 2019 that MIC released a new revision to admit outdoor UWB. Meanwhile, the IEEE 802 LAN/MAN Standards Committee has been developing several UWB related standards or amendments accordingly for supporting different use cases. At the time when this paper is submitted, a new amendment known as IEEE 802.15.4z is undergoing drafting procedure which is expected to enhance ranging ability for impulse radio UWB (IR-UWB). In this paper, we first review the domestic UWB regulation and some of its revisions to get a picture of the domestic regulation transition from indoor to outdoor. We also foresee some anticipating changes in future revisions. Then, we overview several published IEEE 802 standards or amendments that are related to IR-UWB. Some features of IEEE 802.15.4z in drafting are also extracted from open materials. Finally, we show with our recent research results that time bias internal a transceiver becomes important for increasing localization accuracy.
Masafumi MORIYAMA Kenichi TAKIZAWA Hayato TEZUKA Fumihide KOJIMA
High reliability is required, even in Internet of things (IoT) communications, which are sometimes used for crucial control such as automatic driving devices. Hence, both the uplink (UL) and downlink (DL) communication quality must be improved in the physical layer. In this study, we focus on the communication quality of broadcast DL, which is configured using orthogonal frequency-division multiplexing (OFDM) as a multiplexing scheme and turbo code as forward error correction (FEC). To reduce the frame-error rate (FER) in the DL, we consider two transmit-diversity (TD) techniques that use space-time block code (STBC) or cyclic-delay diversity (CDD). The purpose of this paper is to evaluate the TD performance and to enhance FER performance of CDD up to that of STBC. To achieve this goal, a channel estimation method is proposed to improve FER for CDD. For this purpose, we first evaluate the FER performance of STBC and CDD by performing computer simulations and conducting hardware tests using a fading emulator. Then, we conduct field experiments in the 2.5GHz band. From the results of these evaluations, we confirm that STBC and CDD improved FER compared with single antenna transmission. CDD with the proposed channel estimation method achieved almost the same performance as STBC by accurately estimating the channel frequency response (CFR) and appropriately adjusting the amount of cyclic shift (ACS). When moving a received device around Yokosuka Research Park, STBC and CDD, using spatial diversity with omni antennas for TD, improved the FER from 3.84×10-2 to 1.42×10-2 and 1.19×10-2, respectively.
Takahiro AOYAGI Kenichi TAKIZAWA Takehiko KOBAYASHI Jun-ichi TAKADA Kiyoshi HAMAGUCHI Ryuji KOHNO
An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.
Kenichi TAKIZAWA Takahiro AOYAGI Kiyoshi HAMAGUCHI
This letter presents a performance evaluation of wireless communications applicable into a capsule endoscope. A numerical model to describe the received signal strength (RSS) radiated from a capsule-sized signal generator is derived through measurements in which a liquid phantom is used that has electrical constants equivalent to human tissue specified by IEC 62209-1. By introducing this model and taking into account the characteristics of its direction pattern of the capsule and propagation distance between the implanted capsule and on-body antenna, a cumulative distribution function (CDF) of the received SNR is evaluated. Then, simulation results related to the error ratio in the wireless channel are obtained. These results show that the frequencies of 611 MHz or lesser would be useful for the capsule endoscope applications from the view point of error rate performance. Further, we show that the use of antenna diversity brings additional gain to this application.
This paper presents a low-complexity equalization for M-ary biorthogonal keying based direct sequence ultra wideband (MBOK DS-UWB) systems. We focus on a Viterbi equalizer, which is based on maximum likelihood sequence estimation (MLSE). To reduce the computational complexity of MLSE-based equalizer, we use two strategies. One is the use of delayed-decision feedback sequence estimation (DDFSE), which is a hybrid estimation between MLSE and decision feedback estimation (DFE). And the other is the truncation of state transition in MLSE by considering MBOK pulse mapping. The reduced complexity sequence estimation is named as reduced state (RS)-DDFSE. By the use of RS-DDFSE, the complexity of Viterbi equalizer for MBOK DS-UWB is significantly reduced, by comparison with that of MLSE. The performance of RS-DDFSE based equalizer is evaluated on multipath fading channel models provided by IEEE802.15.3a. An analysis on trellis diagram of RS-DDFSE and simulation results show that the impact on error rate performance generated by the complexity lower is slight.
Norihiko KATAYAMA Kenichi TAKIZAWA Takahiro AOYAGI Jun-ichi TAKADA Huan-Bang LI Ryuji KOHNO
Body Area Network (BAN) is considered as a promising technology in supporting medical and healthcare services by combining with various biological sensors. In this paper, we look at wearable BAN, which provides communication links among sensors on body surface. In order to design a BAN that manages biological information with high efficiency and high reliability, the propagation characteristics of BAN must be thoroughly investigated. As a preliminary effort, we measured the propagation characteristics of BAN at frequency bands of 400 MHz, 600 MHz, 900 MHz and 2400 MHz respectively. Channel models for wearable BAN based on the measurement were derived. Our results show that the channel model can be described by using a path loss model for all frequency bands investigated.
Masafumi MORIYAMA Kenichi TAKIZAWA Masayuki OODO Hayato TEZUKA Fumihide KOJIMA
The number of Internet-of-Things (IoT) devices will increase rapidly. In next-generation mobile communication systems, a base station (BS) must effectively accommodate massive numbers of IoT devices. To address this problem, we have proposed a novel up-link non-orthogonal multiple access (NOMA) system that can also be utilized for low latency communication. We have developed and evaluated the system through computer simulation. This paper describes experiments conducted on a prototype system in actual environments. The paper shows results of the experiments when 3 fixed user equipments (UEs) and 2 mobile UEs transmitted signals simultaneously to a BS and then the BS separated superimposed signals using successive interference cancellation (SIC). We also evaluated repetition transmission (RT) and space receive diversity (SD) techniques employed to enhance the signal separation performance for NOMA systems. The results of the experiments confirm that the system using neither SD nor RT could separate 3.5 UEs' signals on average while employing either SD or RT could make the number increase to 4.1 and 4.0, respectively. When both SD and RT were employed, the number rose to 4.4.
Ryouichi NISHIMURA Byeongpyo JEONG Hajime SUSUKITA Takashi TAKAHASHI Kenichi TAKIZAWA
The degree of reception of BS signals is affected by various factors. After routinely recording it at two observation points at two locations, we found that momentary upward and downward level shifts occurred multiple times, mainly during daytime. These level shifts were observed at one location. No such signal was sensed at the other location. After producing an algorithm to extract such momemtary level shifts, their statistical properties were investigated. Careful analyses, including assessment of the signal polarity, amplitude, duration, hours, and comparison with actual flight schedules and route information implied that these level shifts are attributable to the interference of direct and reflected waves from aircraft flying at approximately tropopause altitude. This assumption is further validated through computer simulations of BS signal interference.
Marzieh DASHTI Mir GHORAISHI Katsuyuki HANEDA Jun-ichi TAKADA Kenichi TAKIZAWA
This paper proposes a method for setting the threshold for ultra-wide-band (UWB) threshold-based ranging in indoor scenarios. The optimum threshold is derived based on the full analysis of the ranging error, which is equivalent to the probability of correct detection of first arriving signal in time-based ranging techniques. It is shown that the probability of correct detection is a function of first arriving signal, which has variations with two independent distributions. On the one hand, the first arriving signal varies in different positions with the same range due to multipath interference and on the other, it is a function of distance due to free space path-loss. These two distributions are considered in the derivation of the ranging error, based on which the optimum threshold is obtained. A practical method to derive this threshold is introduced based on the standard channel model. Extensive Monte Carlo simulations, ray-tracing simulations and ranging measurements confirm the analysis and the superior performance of the proposed threshold scheme.
Huan-Bang LI Kunio YATA Kenichi TAKIZAWA Noriaki MIYAZAKI Takashi OKADA Kohei OHNO Takuji MOCHIZUKI Eishin NAKAGAWA Takehiko KOBAYASHI
An ultra-wideband (UWB) system usually occupies a large frequency band, which may overlap with the spectrum of a narrow band system. The latter is referred to as a victim system. To effectively use frequency, a UWB system may create a notch in its spectrum to accommodate the victim signal for interference avoidance. Parameters of the notch such as the depth and the width of a notch need to be decided in accordance to victim systems. In this paper, we investigate the effective UWB avoidance by examining the suitable notch based on experimental evaluation. In the experiments, 3GPP LTE, Mobile WiMAX, as well as an IMT Advanced Test-bed are respectively employed to represent different types of victim systems. The UWB system is set up based on WiMedia specifications and operates at the UWB low band of 3.1–4.8 GHz. A notch is fabricated by nullifying the related subcarriers of the UWB signal. In addition, a filter or a window function is formed and employed to further smooth the notch. Bit error rate (BER) or packet error rate (PER) performances of victim systems are measured and used to evaluate the UWB interference. Our results show that when a notch is properly formed, the interference level introduced by UWB can be below the permitted level by regulations.