This paper presents a novel decoding strategy called combined iterative demapping/decoding (CIDD), for coded M-ary biorthogonal keying-based direct sequence ultra-wideband (MBOK DS-UWB) systems. A coded MBOK DS-UWB system consists of a convolutional encoder, an interleaver, and an MBOK DS-UWB pulse mapper. CIDD improves the error rate performance of MBOK DS-UWB systems by applying the turbo principle to the demapping and decoding processes at the receiver side. To develop the CIDD, a soft-in/soft-out MBOK demapping algorithm, based on the max-log-MAP algorithm, was derived. Simulation results showed that using CIDD siginificantly improved the error rate performance of both static and multipath fading channels. It was also shown that the computational complexity of CIDD is comparable to that of the Viterbi decoding used in [133,171]8 conventional convolutional coding.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kenichi TAKIZAWA, Ryuji KOHNO, "Combined Iterative Demapping and Decoding for Coded MBOK DS-UWB Systems" in IEICE TRANSACTIONS on Fundamentals,
vol. E87-A, no. 10, pp. 2621-2629, October 2004, doi: .
Abstract: This paper presents a novel decoding strategy called combined iterative demapping/decoding (CIDD), for coded M-ary biorthogonal keying-based direct sequence ultra-wideband (MBOK DS-UWB) systems. A coded MBOK DS-UWB system consists of a convolutional encoder, an interleaver, and an MBOK DS-UWB pulse mapper. CIDD improves the error rate performance of MBOK DS-UWB systems by applying the turbo principle to the demapping and decoding processes at the receiver side. To develop the CIDD, a soft-in/soft-out MBOK demapping algorithm, based on the max-log-MAP algorithm, was derived. Simulation results showed that using CIDD siginificantly improved the error rate performance of both static and multipath fading channels. It was also shown that the computational complexity of CIDD is comparable to that of the Viterbi decoding used in [133,171]8 conventional convolutional coding.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e87-a_10_2621/_p
Copy
@ARTICLE{e87-a_10_2621,
author={Kenichi TAKIZAWA, Ryuji KOHNO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Combined Iterative Demapping and Decoding for Coded MBOK DS-UWB Systems},
year={2004},
volume={E87-A},
number={10},
pages={2621-2629},
abstract={This paper presents a novel decoding strategy called combined iterative demapping/decoding (CIDD), for coded M-ary biorthogonal keying-based direct sequence ultra-wideband (MBOK DS-UWB) systems. A coded MBOK DS-UWB system consists of a convolutional encoder, an interleaver, and an MBOK DS-UWB pulse mapper. CIDD improves the error rate performance of MBOK DS-UWB systems by applying the turbo principle to the demapping and decoding processes at the receiver side. To develop the CIDD, a soft-in/soft-out MBOK demapping algorithm, based on the max-log-MAP algorithm, was derived. Simulation results showed that using CIDD siginificantly improved the error rate performance of both static and multipath fading channels. It was also shown that the computational complexity of CIDD is comparable to that of the Viterbi decoding used in [133,171]8 conventional convolutional coding.},
keywords={},
doi={},
ISSN={},
month={October},}
Copy
TY - JOUR
TI - Combined Iterative Demapping and Decoding for Coded MBOK DS-UWB Systems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2621
EP - 2629
AU - Kenichi TAKIZAWA
AU - Ryuji KOHNO
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E87-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2004
AB - This paper presents a novel decoding strategy called combined iterative demapping/decoding (CIDD), for coded M-ary biorthogonal keying-based direct sequence ultra-wideband (MBOK DS-UWB) systems. A coded MBOK DS-UWB system consists of a convolutional encoder, an interleaver, and an MBOK DS-UWB pulse mapper. CIDD improves the error rate performance of MBOK DS-UWB systems by applying the turbo principle to the demapping and decoding processes at the receiver side. To develop the CIDD, a soft-in/soft-out MBOK demapping algorithm, based on the max-log-MAP algorithm, was derived. Simulation results showed that using CIDD siginificantly improved the error rate performance of both static and multipath fading channels. It was also shown that the computational complexity of CIDD is comparable to that of the Viterbi decoding used in [133,171]8 conventional convolutional coding.
ER -