The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Toshio NOJIMA(31hit)

1-20hit(31hit)

  • The Test Phantom for the Cochlear Implant to Estimate EMI from Cellular Phone

    Yoshiaki TARUSAWA  Kohjiroh OHSHITA  Toshio NOJIMA  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3275-3280

    This paper proposes the test phantom for the cochlear implant to estimate electromagnetic interference (EMI) from a cellular phone. This test phantom is constructed from a square tank filled with saline solution. The use of a flat phantom provides a level of consistency in duplicating the exposure conditions in the EMI tests. The measurement and calculation results show that there is no difference in the E-field strength near the surface of the phantom when comparing flat and head-shaped phantoms and that the flat phantom is sufficiently thick to disregard the influence of reflective waves near the surface of the phantom. The calculation results also indicate the appropriateness of using physiological saline (0.18 g/l) up to 3 GHz when comparing the E-field strength inside a phantom comprising physiological saline and in a 2/3 muscle model. The results of actual EMI testing of a cochlear implant show that there is no difference in the maximum interference distance when using either the flat or head-shaped phantom. Based on these results, this paper presents the validity of using the flat phantom in EMI tests from cellular phone for the cochlear implant.

  • High Efficiency Transmitting Power Amplifiers for Portable Radio Units

    Toshio NOJIMA  Sadayuki NISHIKI  Kohji CHIBA  

     
    INVITED PAPER

      Vol:
    E74-B No:6
      Page(s):
    1563-1570

    High efficiency amplifier construction techniques are investigated focusing on UHF band transmitting power amplifiers intended for cellular portable telephones and the state of the art amplifiers are presented. First, it is shown that high efficiency amplifiers are indispensable to attain pocket sized portable units through a theoretical analysis using a simple model. When about 1 W of transmitting power is required, it is desirable for the amplifier to operate with an efficiency of over 40%. Secondly, the switching mode scheme is described as the most effective technical means to achieve high amplifier efficiency. State of the art switching mode amplifiers, the Harmonic Reaction Amplifier (HRA) and the Linearized Saturation Amplifier with Bidirectional Control (LSA-BC), are presented as examples of nonlinear and linear amplifiers respectively. Basic operation mechanisms are shown. Experimental HRA and LSA-BC are constructed to determine their practically attainable efficiencies. Power-added efficiencies of 75% and 40% are recorded from a 1.7 GHz band 3 W HRA for CW and a 1.5 GHz band 1 W LSA-BC for π/4 QPSK respectively. These values indicate that these types of amplifier can be applied to pocket sized portable radio units.

  • Electric-Field Distribution Estimation in a Train Carriage due to Cellular Radios in order to Assess the Implantable Cardiac Pacemaker EMI in Semi-Echoic Environments

    Takashi HIKAGE  Toshio NOJIMA  Soichi WATANABE  Takashi SHINOZUKA  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3281-3286

    The electromagnetic field (EMF) distributions created inside a train carriage by the cellular radios of the passengers are analyzed and the impact their electromagnetic interference (EMI) on the implantable cardiac pacemakers is evaluated based upon the analysis results. Both computer simulations and experiments using 800 MHz and 2 GHz transmitters in an actual train carriage confirm that excessively high EMF, high enough to affect the normal functions of the pacemaker, does not occur inside the carriage provided the safe distance of 22 cm specified for pacemaker users is kept. A simplified histogram estimation method for electric field strength is newly developed to deal with the complicated EMF distributions. It allows the EMI risk to pacemakers by cellular radio transmission to be quantitatively evaluated. Methodologies are described first. Typical results of FDTD analysis and actual measurement data are then shown. Finally, considerations and conclusions are made.

  • Using Large-Scale FDTD Method to Obtain Precise Numerical Estimation of Indoor Wireless Local Area Network Office Environment

    Louis-Ray HARRIS  Takashi HIKAGE  Toshio NOJIMA  

     
    PAPER-Wireless LAN System

      Vol:
    E92-A No:9
      Page(s):
    2177-2183

    The Finite-Difference Time-Domain (FDTD) technique is presented in this paper as an estimation method for radio propagation prediction in large and complex wireless local area network (WLAN) environments. Its validity is shown by comparing measurements and Ray-trace method with FDTD data. The 2 GHz (802.11b/g) and 5 GHz (802.11a) frequency bands are used in both the calculations and experiments. The electric field (E-field) strength distribution has been illustrated in the form of histograms and cumulative ratio graphs. By using the FDTD method to vary the number of human bodies in the environment, the effects on E-field distribution due to human body absorption are also observed for 5 GHz WLAN design.

  • Advanced RF Technologies and Future Requirements for Mobile Communication Base Stations

    Nobuo NAKAJIMA  Toshio NOJIMA  

     
    INVITED PAPER

      Vol:
    E85-C No:12
      Page(s):
    1950-1958

    Recent cellular systems have excellent performances, such as high quality, compactness, low power consumption and low cost, owing not only to digital technologies but also to various RF device technologies, especially amplifier technologies. This paper describes base station RF technologies that contributed for the improvement of base station equipment. Future mobile system will provide much higher bitrate services in the higher frequency band. Requirements and new technologies that are expected for RF equipment of the future base stations are also discussed.

  • A Low-Loss 5 GHz Bandpass Filter Using HTS Quarter-Wavelength Coplanar Waveguide Resonators

    Hideyuki SUZUKI  Zhewang MA  Yoshio KOBAYASHI  Kei SATOH  Shoichi NARAHASHI  Toshio NOJIMA  

     
    PAPER-Microwave Devices and Systems

      Vol:
    E85-C No:3
      Page(s):
    714-719

    A new structure of a low-loss high temperature superconducting (HTS) filter is proposed by using quarter-wavelength coplanar waveguide (CPW) resonators. A 4-pole Chebyshev band-pass filter with the center frequency 5.0 GHz and the 0.01 dB-ripple fractional bandwidth 3.2% is designed based on the theory of direct-coupled resonator filters using K- and J-inverters. This filter is fabricated by using a high-Tc superconductive YBCO film deposited on a MgO dielectric substrate. The frequency response of the filter measured at 60 K agrees very well with the theoretical one. The insertion loss is 0.22 dB. The insertion loss of this filter is the lowest in HTS-CPW filters presented so far.

  • Leaf-Shaped Element Bowtie Antenna with Flat Reflector for UWB Applications

    Michitaka AMEYA  Manabu YAMAMOTO  Toshio NOJIMA  Kiyohiko ITOH  

     
    PAPER-Antennas

      Vol:
    E90-B No:9
      Page(s):
    2230-2238

    Recently, a lot of UWB antennas have been reported by many research groups. Most of the reported antennas have omnidirectional radiation characteristics. The disadvantage of using omnidirectional antennas is that the antenna performance can be degraded by adjacent walls or metals. If unidirectional UWB antennas are utilized, the degradation on the antenna performance due to omnidirectionality can be avoided. Another important topic in UWB antennas is the waveform distortion caused by antennas' transmission characteristics. In impulse-based UWB communications, waveform distortions of transmitted and received pulses caused by antennas deteriorate the communication performance. Therefore, the development of UWB antennas having small waveform distortions is highly desirable. In this paper, we propose a novel bowtie antenna using leaf-shaped radiating elements and a flat reflector. This antenna has unidirectional radiation patterns over the frequency range of 3.0 to 10.5 GHz. The actual gain in the maximum radiation direction is 6.0-9.0 dBi in the frequency range of 4.5-9.4 GHz (relative bandwidth of 71%). The cross-correlations between source pulse and received pulse waveforms are 0.89-0.94, and hence the waveform distortion caused by this antenna is relatively small. As a result, the proposed antenna is useful for impulse-based UWB communication systems using correlation detection.

  • Developments in Mobile/Portable Telephones and Key Devices for Miniaturization

    Shuuji URABE  Toshio NOJIMA  

     
    INVITED PAPER

      Vol:
    E79-C No:5
      Page(s):
    600-605

    Fundamental microwave key devices used in achieving compact mobile/portable telephones (raidio units) are discussed. The historical development flow of the systems and radio units are introduced, with respect to the 800-/900-MHz and 1.5-GHz Japanese cellular radio systems. The design concept of the developed radio units is briefly described. Tehnical requirements for RF circuits are reviewed and the developed key devices are practically applied to the circuits. Key factors in the requirements are also shown. Finally. future trends fro the key devices are surveyed from the stand point of achieving a smaller and more light weight pocket radio unit.

  • A Novel Filter Construction Utilizing HTS Reaction-Type Filter to Improve Adjacent Channel Leakage Power Ratio of Mobile Communication Systems

    Shunichi FUTATSUMORI  Takashi HIKAGE  Toshio NOJIMA  Akihiko AKASEGAWA  Teru NAKANISHI  Kazunori YAMANAKA  

     
    PAPER-Microwaves

      Vol:
    E92-C No:3
      Page(s):
    307-314

    We propose a new band selective stop filter construction to decrease the out of band intermodulation distortion (IMD) noise generated in the transmitting power amplifier. Suppression of IMD noise directly improves the adjacent channel leakage power ratio (ACLR). A high-temperature superconducting (HTS) device with extremely high-Q performance with very small hybrid IC pattern would make it possible to implement the proposed filter construction as a practical device. To confirm the effectiveness of the HTS reaction-type filter (HTS-RTF) in improving ACLR, investigations based on both experiments and numerical analyses are carried out. The structure of a 5-GHz split open-ring resonator is investigated; its targets include high-unload Q-factor, low current densities, and low radiation. A designed 5-GHz HTS-RTF with 4 MHz suppression bandwidth and more than 40 dB MHz-1 sharp skirt is fabricated and experimentally investigated. The measured ACLR values are improved by a maximum of 12.8 dB and are constant up to the passband signal power of 40 dBm. In addition, to examine the power efficiency improvement offered by noise suppression of the HTS-RTF, numerical analyses based on measured results of gallium nitride HEMT power amplifier characteristics are conducted. The analyzed results shows the drain efficiency of the amplifier can be improved to 44.2% of the amplifier with the filter from the 15.7% of the without filter.

  • Multi-Port Amplifier with Enhanced Linearity and Isolation Employing Feed-Forward Techniques

    Yasunori SUZUKI  Tetsuo HIROTA  Toshio NOJIMA  

     
    PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    501-508

    This paper proposes a new multi-port amplifier configuration that employs feed-forward techniques. In general, a multi-port amplifier is used as a transponder in a satellite transmitter. A multi-port amplifier comprises an N-in N-out input-side matrix network, N amplifiers, and an N-in N-out output-side matrix network. Based on this configuration, other undesired ports leak power to the desired port in a multi-port amplifier. If the power amplifier of a cellular base station uses a multi-port amplifier, the power leakage from the other ports causes degradation in the error vector magnitude. The proposed configuration employs N-parallel feed-forward amplifiers with a multi-port amplifier as the main amplifier. The proposed configuration drastically reduces the power leakage using the employed feed-forward techniques. An experimental 2-GHz band four-in four-out multi-port amplifier is constructed and tested. It achieves the leakage power level of -58 dB, a gain deviation of less than 0.05 dB, and a phase deviation of less than 0.45 deg. with the maximum power of 35 dBm over a 20-MHz bandwidth with the center frequency 2.14 GHz at room temperature. The experimental multi-port amplifier reduces the leakage power level by approximately 30 dB compared to that for a multi-port amplifier without the feed-forward techniques. The proposed configuration can be applied to power amplifiers in cellular base stations.

  • Estimation of EMI Impact by Cellular Radio on Implantable Cardiac Pacemakers in Elevator Using EMF Distributions Inside Human Body

    Atsushi KITAGAWA  Takashi HIKAGE  Toshio NOJIMA  Ally Y. SIMBA  Soichi WATANABE  

     
    PAPER-Biological Effects and Safety

      Vol:
    E93-B No:7
      Page(s):
    1839-1846

    The purpose of this study is to estimate the possible effect of cellular radio on implantable cardiac pacemakers in elevators. We previously investigated pacemaker EMI in elevator by examining the E-field distribution of horizontal plane at the height of expected for implanted pacemakers inside elevators. In this paper, we introduce our method for estimating EMI impact to implantable cardiac pacemakers using EMF distributions inside the region of the human body in which pacemakers are implanted. Simulations of a human phantom in an elevator are performed and histograms are derived from the resulting EMF distributions. The computed results of field strengths are compared with a certain reference level determined from experimentally obtained maximum interference distance of implantable cardiac pacemakers. This enables us to carry out a quantitative evaluation of the EMI impact to pacemakers by cellular radio transmission. This paper uses a numerical phantom model developed based on an European adult male. The simulations evaluate EMI on implantable cardiac pacemakers in three frequency bands. As a result, calculated E-field strengths are sufficiently low to cause the pacemaker to malfunction in the region examined.

  • Image NRD Guide-Fed Dielectric Rod Antenna for Millimeter-Wave Applications

    Ally Yahaya SIMBA  Manabu YAMAMOTO  Toshio NOJIMA  Kiyohiko ITOH  

     
    PAPER-Antennas, Circuits and Receivers

      Vol:
    E87-C No:9
      Page(s):
    1405-1411

    An image NRD guide-fed dielectric rod antenna, which is suitable for use at millimeter-wave frequencies, is presented in this paper. The antenna is composed of a linearly tapered dielectric rod connected to the image NRD guide. First, radiation characteristics of the dielectric rod antenna directly protruded from the end of the image NRD guide are investigated by FDTD analysis and measurements at 30 GHz band. For this case, the degradation of the radiation pattern and the decrease of the gain, which are due to the strong radiation from the guide-to-antenna discontinuity, are observed. In order to minimize this radiation and to realize reasonable radiation characteristics, a transition from the image NRD guide-to-rod antenna is proposed. A simple procedure to determine the optimum dimensions of the transition is described. This procedure is based on parametric study of the transition's dimensions, and is performed using FDTD analysis. Based on the results, the dielectric rod antenna having a length of 10 λ0 is designed, and its performance is analyzed and measured. The results show that radiation patterns with the half power beamwidth of 22, sidelobe level of -21 dB and reasonable gain of 18.5 dBi can be realized by employing the transition having the optimum dimensions.

  • Estimation of Electric Field Intensity in the Fresnel Region of Colinear Array Antennas

    Takehiko KOBAYASHI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E77-B No:6
      Page(s):
    749-753

    An estimation method for efficiently calculating the field intensity in the Fresnel region of broadside colinear array antennas is developed, and its performance is experimentally verified. The calculation utilizes only the antenna design data, and is readily applicable to arbitrary array antennas. This method can provide a safety protection zone in the proximity of array antennas, in order to protect radio communication personnel and general public from the potentially hazardous radiofrequency exposure.

  • A New Signaling Architecture THREP with Autonomous Radio-Link Control for Wireless Communications Systems

    Masahiko HIRONO  Toshio NOJIMA  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1163-1169

    This paper presents a new signaling architecture for radio-access control in wireless communications systems. Called THREP (for THREe-phase link set-up Process), it enables systems with low-cost configurations to provide tetherless access and wide-ranging mobility by using autonomous radio-link controls for fast cell searching and distributed call management. A signaling architecture generally consists of a radio-access part and a service-entity-access part. In THREP, the latter part is divided into two steps: preparing a communication channel, and sustaining it. Access control in THREP is thus composed of three separated parts, or protocol phases. The specifications of each phase are determined independently according to system requirements. In the proposed architecture, the first phase uses autonomous radio-link control because we want to construct low-power indoor wireless communications systems. Evaluation of channel usage efficiency and hand-over loss probability in the personal handy-phone system (PHS) shows that THREP makes the radio-access sub-system operations in a practical application model highly efficient, and the results of a field experiment show that THREP provides sufficient protection against severe fast CNR degradation in practical indoor propagation environments.

  • Multi-Grid FDTD Calculation of Electromagnetic Absorption in the Human Head for 5 GHz Band Portable Terminals

    Jianqing WANG  Hideaki SEKO  Osamu FUJIWARA  Toshio NOJIMA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E84-B No:11
      Page(s):
    3033-3040

    A multi-grid finite-difference time-domain (FDTD) method was applied for numerical dosimetry analysis in the human head for 5 GHz band portable terminals. By applying fine FDTD grids to the volumes in the human head where the highest electromagnetic (EM) absorption occurs and coarse grids to the remaining volumes of the head, the spatial peak specific absorption rate (SAR) assessment was achieved with a less computation memory and time. The accuracy of applying the multi-grid FDTD method to the spatial peak SAR assessment was checked in comparison with the results obtained from the usual uniform-grid method, and then the spatial peak SARs for three typical situations of a person using a 5.2 GHz band portable terminal were calculated in conjunction with an anatomically based human head model.

  • Nonlinear Compensation Technologies for Microwave Power Amplifiers in Radio Communication Systems

    Toshio NOJIMA  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    679-686

    Technologies used to characterize and compensate nonlinearities in microwave power amplifiers are discussed. First, a complex power series representation that allows both amplitude and phase nonlinearities to be dealt with simultaneously is proposed, and in order to estimate the 3rd-order complex coefficient phase of practical amplifiers, two kinds of experimental measurement methods are proposed. Next, the fundamental circuit configuration of IF cuber predistortion linearizer that compensates 3rd-order intermodulation distortion is derived from a nonlinear analysis using complex power series representation. Two practical cuber predistorters for the 6-GHz TWTA and the 800-MHz FET-PA are demonstrated. Moreover, the unique nonlinear compensation technology of side-band inversion is introduced for microwave relay system using TWTAs. Finally, the self-adjusting feed-forward (SAFF)-PA developed for digital cellular base stations is reviewed.

  • A Wideband Digital Predistorter for a Doherty Power Amplifier Using a Direct Learning Memory Effect Filter

    Kenichi HORIGUCHI  Naoko MATSUNAGA  Kazuhisa YAMAUCHI  Ryoji HAYASHI  Moriyasu MIYAZAKI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    975-982

    This paper presents a digital predistorter with a wideband memory effect compensator for a Doherty power amplifier (PA). A simple memory-predistortion model, which consists of a look-up-table (LUT) and an adaptive filter equalizing memory effects, and a new memory effect estimation algorithm using a direct-learning architecture are proposed. The proposed estimation algorithm has an advantage that a transfer function of a feedback circuit does not affect the learning process. The predistorter is implemented in a field programmable gate array (FPGA) and a digital signal processor (DSP). The transmitter has achieved distortion level of -50.8 dBr at signal bandwidth away from the carrier, and PA module efficiency of 24% with output power of 43 dBm at 2595 MHz under a 20 MHz-bandwidth orthogonal frequency division multiplexing (OFDM) signal using laterally diffused metal oxide semiconductor (LDMOS) FETs.

  • Low-Loss Matching Network Design for Band-Switchable Multi-Band Power Amplifier Open Access

    Atsushi FUKUDA  Takayuki FURUTA  Hiroshi OKAZAKI  Shoichi NARAHASHI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1172-1181

    This paper presents a novel design scheme for a band-switchable multi-band power amplifier (BS-MPA). A key point of the design scheme is configuring multi-section reconfigurable matching networks (MR-MNs) optimally in terms of low loss matching in multiple frequency bands from 0.7 to 2.5 GHz. The MR-MN consists of several matching sections, each of which has a matching block connected to a transmission line via a switch. Power dissipation at an actual on-state switch results in the insertion loss of the MR-MN and depends on how the impedance is transformed by the MR-MN. The proposed design scheme appropriately transforms the impedance of a high power transistor to configure a low loss MR-MN. Numerical analyses show quantitative improvement in the loss using the proposed scheme. A 9-band 3-stage BS-MPA is newly designed following the proposed scheme and fabricated on a multi-layer low temperature co-fired ceramic substrate for compactness. The BS-MPA achieves a gain of over 30 dB, an output power of greater than 33 dBm and a power added efficiency of over 40% at the supply voltage of 4 V in each operating band.

  • Precise Estimation of Cellular Radio Electromagnetic Field in Elevators and EMI Impact on Implantable Cardiac Pacemakers

    Louis-Ray HARRIS  Takashi HIKAGE  Toshio NOJIMA  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1182-1187

    The purpose of this paper is to investigate the possible impact of cellular phones' signals on implantable cardiac pacemakers in elevators. This is achieved by carrying out precise numerical simulations based on the Finite-Difference-Time-Domain method to examine the electromagnetic fields in elevator models. In order to examine the realistic and complicated situations where humans are present in the elevator, we apply the realistic homogeneous human phantom and cellular radios operating in the frequency bands 800 MHz, 1.5 GHz and 2 GHz. These computed results of field strength inside the elevator are compared with a certain reference level determined from the experimentally obtained maximum interference distance of implantable cardiac pacemakers. This enables us to carry out a quantitative evaluation of the EMI risk to pacemakers by cellular radio transmission. The results show that for the case when up to 5 mobile radio users are present in the elevator model used, there is no likelihood of pacemaker malfunction for the frequency bands 800 MHz, 1.5 GHz and 2 GHz.

  • Dosimetric Assessment of Two-Layer Cell Culture Configurations for Fertility Research at 1950MHz

    Yijian GONG  Manuel MURBACH  Teruo ONISHI  Myles CAPSTICK  Toshio NOJIMA  Niels KUSTER  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:3
      Page(s):
    631-637

    The objective of this paper is to extend the dosimetric assessment of 35mm Petri dishes exposed in the standing wave of R18 waveguides operated at 1950MHz for a medium-oil two-layer configuration for cells in monolayer and suspension. The culture medium inside the Petri dish is covered by oil that prevents evaporation and seals the cells below in the medium. The exposure of the cells was analyzed for one suspension-medium configuration, two different suspension-multilayer configurations, and one monolayer-multilayer configuration. The numerical dosimetry is verified by dosimetric temperature measurements. The non-uniformity of the specific absorption rate (SAR) distribution is 30% for monolayer, and 59-75% for suspension configurations. The latter should be taken into account when biological experiment is performed.

1-20hit(31hit)