The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Moriyasu MIYAZAKI(15hit)

1-15hit
  • 180-Degree Branch Line Coupler Composed of Two Types of Iris-Loaded Waveguides

    Hidenori YUKAWA  Yu USHIJIMA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:2
      Page(s):
    85-92

    We propose a 180-degree branch line coupler composed of two types of iris-loaded waveguides. The proposed coupler consists of two main transmission lines and branch lines with different electrical lengths. Based on optimal electrical lengths, a 180-degree output phase difference can be achieved without additional phase shifters. The two main lines with different electrical lengths are realized by capacitive and inductive iris-loaded waveguides. The size of the proposed coupler is nearly half that of the conventional 180-degree branch line coupler with additional phase shifters. Thus, the proposed coupler is of advantage with respect to the conventional one. We designed a proposed coupler in the K-band for satellite communication systems. The measurement results demonstrate a reflection of -20 dB, isolation of -20 dB, coupling response of -3.1+0.1 dB/-0.1 dB, and phase differences of 0+0.1 deg/-1.4 deg and -180+0.5 deg/-2.3 deg at a bandwidth of 8% in the K-band.

  • H-Plane Manifold-Type Broadband Triplexer with Closely Arranged Junctions

    Tamotsu NISHINO  Moriyasu MIYAZAKI  Toshiyuki HORIE  Hideki ASAO  Shinichi BETSUDAN  Yasunori IWASA  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E82-C No:5
      Page(s):
    774-780

    We propose an H-plane manifold-type triplexer with closely arranged junctions. Broadband characteristics for each bands are obtained by arranging filters closely near the end of the common waveguide. Three fundamental and sufficient parameters are introduced for numerical optimizations to determine the configuration of the broadband triplexer. The configuration including closely arranged junctions requires an generalized scattering matrix (GS matrix) of an asymmetric cross junction to simulate and design. We expand the mode matching technique (MMT) to be able to analyze this kind of discontinuities by joining two asymmetric steps discontinuities to a symmetric cross junction. This is suitable expressions for numerical calculations. The characteristics of the whole triplexer are obtained by cascading GS matrices of the corresponding discontinuities. The experimental results of the fabricated triplexer were compared with the simulated data, and the results agree well with the simulated one. The characteristics of the fabricated triplexer satisfy the request of the broad band operation and high power-handling capability.

  • A Wideband Digital Predistorter for a Doherty Power Amplifier Using a Direct Learning Memory Effect Filter

    Kenichi HORIGUCHI  Naoko MATSUNAGA  Kazuhisa YAMAUCHI  Ryoji HAYASHI  Moriyasu MIYAZAKI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    975-982

    This paper presents a digital predistorter with a wideband memory effect compensator for a Doherty power amplifier (PA). A simple memory-predistortion model, which consists of a look-up-table (LUT) and an adaptive filter equalizing memory effects, and a new memory effect estimation algorithm using a direct-learning architecture are proposed. The proposed estimation algorithm has an advantage that a transfer function of a feedback circuit does not affect the learning process. The predistorter is implemented in a field programmable gate array (FPGA) and a digital signal processor (DSP). The transmitter has achieved distortion level of -50.8 dBr at signal bandwidth away from the carrier, and PA module efficiency of 24% with output power of 43 dBm at 2595 MHz under a 20 MHz-bandwidth orthogonal frequency division multiplexing (OFDM) signal using laterally diffused metal oxide semiconductor (LDMOS) FETs.

  • High Directivity Coupler Suppressing Leak Coupling with Cancellation Circuit of Wilkinson Divider

    Kazuhisa YAMAUCHI  Akira INOUE  Moriyasu MIYAZAKI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1032-1037

    A high directivity microstrip coupler suppressing leak coupling with a cancellation circuit of a Wilkinson divider is presented. The presented coupler utilizes a cancellation circuit between a coupling port and an isolation port of the conventional microstrip coupler to enhance the isolation. The cancellation circuit consists of the Wilkinson divider, the multistage attenuator, and the phase offset line. The frequency to enhance the isolation is controlled by the attenuators. As the directivity is improved without the modification of the conventional coupler, the cancellation circuit can be applied to the fabricated conventional couplers. The measured directivity of the presented 1/18 λ coupler is improved from 4.8 dB to 43.0 dB at 2.6 GHz, compared with the conventional 1/4 λ coupler with -20 dB coupling. Simultaneously, the 27.4% relative bandwidth with the 20 dB directivity is achieved.

  • Millimeter-Wave High-Power MMIC Switch with Multiple FET Resonators

    Masatake HANGAI  Tamotsu NISHINO  Morishige HIEDA  Kunihiro ENDO  Moriyasu MIYAZAKI  

     
    PAPER-Active Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1695-1701

    A millimeter-wave low-loss, high-isolation and high-power terminated MMIC switch is developed, and the design theory is formulated. Our invented switch is designed based on a non-linear relationship between the parallel resistance of an FET and its gate width. Our measurements of the parallel resistance with different gate width have revealed that the resistance is inverse proportion to a square of the gate width. By using this relationship, we have found the fact that the multiple FET resonators with smaller gate width and high inductance elements realize high-Q performance for the same resonant frequency. Since the power handling capability is determined by the total gate width, our switch circuit could reduce its insertion loss, keeping the high-power performance. We additionally describe the design method of this switch circuit. The relationships between the gate widths of the FETs and the electrical performances are described analytically. The required gate widths of the FETs for handling high power signal are represented, and the design equations to obtain lower insertion loss and higher isolation performances keeping high power capability are presented. To verify this methodology, we fabricated a MMIC switch. The MMIC had insertion loss of 2.86 dB, isolation of 37 dB and power handling capability of more than 33 dBm at 32 GHz.

  • A Low-Loss Serial Power Combiner Using Novel Suspended Stripline Couplers

    Yukihiro TAHARA  Hideyuki OH-HASHI  Kazuyuki TOTANI  Moriyasu MIYAZAKI  Sei-ichi SAITO  Osami ISHIDA  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    15-19

    A low-loss serial power combiner using suspended stripline is described. It consists of novel broadside-coupled directional couplers which have shunt capacitances at the edges of the coupled sections. These additional shunt capacitances compensate for poor directivities of the couplers because of inhomogeneous dielectric in suspended stripline structure. The fabricated three-way power combiner has achieved good performance with insertion loss less than 0.23 dB over a bandwidth of 10% in 2 GHz band.

  • A Millimeter-Wave Pulse Transmitter with a Harmonic Mixer

    Kenji KAWAKAMI  Hiroshi IKEMATSU  Koichi MATSUO  Naohisa UEHARA  Moriyasu MIYAZAKI  Tadashi TAKAGI  

     
    PAPER

      Vol:
    E88-C No:10
      Page(s):
    1947-1951

    This paper describes a millimeter-wave pulse transmitter with a 38 GHz-band Voltage Controlled Oscillator (VCO) and a 77/38 GHz-band harmonic mixer. This harmonic mixer works as both of a pulse modulator and a multiplier. This configuration of the transmitter is very simple, and can be applied to high-speed pulse modulation like Ultra Wide Band. By using the harmonic mixer, furthermore, a fluctuation of the load impedance of the 38 GHz VCO can be reduced. Compared with the conventional configuration, the required amount of isolation between the VCO and the load has been able to be reduced by more than 30 dB as a result of the experiment in a millimeter-wave band.

  • A Broadband Asymmetric Tapered-Line Power Divider with Several Strip Resistors

    Yukihiro TAHARA  Hideyuki OH-HASHI  Moriyasu MIYAZAKI  Seiichi SAITO  

     
    PAPER-Passive Circuits

      Vol:
    E88-C No:7
      Page(s):
    1395-1400

    A novel asymmetric tapered-line power divider is presented. It has several strip resistors which are formed like a ladder between the tapered-line conductors to achieve a good output isolation. The equivalent circuits are derived with the even/odd-mode analysis. These equivalent circuits are employed to design the asymmetric power divider. The fabricated asymmetric power divider with 1:2 power dividing ratio shows broadband performances in return loss and isolation which are greater than 19 dB over a 3:1 bandwidth in the C-Ku bands.

  • Ku/Ka-band Compact Orthomode Junction with Low Pass Filters for High Power Applications

    Hidenori YUKAWA  Koji YOSHIDA  Tomohiro MIZUNO  Tetsu OWADA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:2
      Page(s):
    156-161

    This paper presents a compact orthomode junction with low pass filters for high power applications. It consists of a circular waveguide step, a matching element for a high frequency band, and coupling sections straddle the circular waveguide step. These dimensions were optimized to achieve wideband performances and to support a high power rating. The structure without rectangular to circular transition is simple and comprised of two milled layers to divide E-plane of corrugated low pass filters. It can be easily manufactured and has low losses. The fabricated Ku/Ka-band orthomode junction was measured including power handling test of 2,kW at Ku-band. The measurement results demonstrated return loss of 21,dB and loss of 0.2,dB in the Ku- and Ka- band.

  • Uniaxially Symmetrical T-Junction OMT with 45° -Tilted Branch Waveguide Ports

    Hidenori YUKAWA  Yu USHIJIMA  Toru TAKAHASHI  Toru FUKASAWA  Yoshio INASAWA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    57-65

    A T-junction orthomode transducer (OMT) is a waveguide component that separates two orthogonal linear polarizations in the same frequency band. It has a common circular waveguide short-circuited at one end and two branch rectangular waveguides arranged in opposite directions near the short circuit. One of the advantages of a T-junction OMT is its short axial length. However, the two rectangular ports, which need to be orthogonal, have different levels of performance because of asymmetry. We therefore propose a uniaxially symmetrical T-junction OMT, which is configured such that the two branch waveguides are tilted 45° to the short circuit. The uniaxially symmetrical configuration enables same levels of performance for the two ports, and its impedance matching is easier compared to that for the conventional configuration. The polarization separation principle can be explained using the principles of orthomode junction (OMJ) and turnstile OMT. Based on calculations, the proposed configuration demonstrated a return loss of 25dB, XPD of 30dB, isolation of 21dB between the two branch ports, and loss of 0.25dB, with a bandwidth of 15% in the K band. The OMT was then fabricated as a single piece via 3D printing and evaluated against the calculated performance indices.

  • A PCB Integrated Multi-layered Strip Line Tandem Coupler Using Compensating Ground Through-Hole Elements

    Takeshi YUASA  Yukihiro TAHARA  Tetsu OWADA  Naofumi YONEDA  Yoshihiko KONISHI  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E97-C No:10
      Page(s):
    1014-1020

    This paper presents a printed circuit board (PCB) integrated multi-layered strip line tandem coupler, which used simple compensating ground through-hole (GTH) elements. The GTH elements on one end of the coupled line can generate additional capacitance between the signal line and the ground, which effectively compensates for the parasitic capacitance around the crossed signal lines on the opposite end of the coupled line. It has been experimentally demonstrated that the proposed coupler fabricated for the X-band is effective to improve both the reflection and the isolation characteristics.

  • A Novel Three-Port Power Divider with Compensation Networks for Non-ideal Isolation Resistor

    Yukihiro TAHARA  Hideyuki OH-HASHI  Moriyasu MIYAZAKI  

     
    PAPER-Passive (Divider)

      Vol:
    E86-C No:2
      Page(s):
    139-143

    This paper describes a three-port power divider with compensation networks for non-ideal isolation resistor. The compensation networks consist of two pairs of transmission lines and cancel out the parasitic reactance of the non-ideal isolation resistor. The design equations to provide perfect return loss and isolation at a center frequency are presented. The availability of the proposed power divider has been verified by the comparison between calculated and experimental results in the Ku-band.

  • A Compact Wideband T/R Switching Circuit Utilizing Quadrature Couplers and Gate-and-Drain-Driven HPAs

    Hiromitsu UCHIDA  Masatoshi NII  Norio TAKEUCHI  Yoshihiro TSUKAHARA  Moriyasu MIYAZAKI  Yasushi ITOH  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2022-2028

    A novel compact T/R (Transmit/Receive) switching circuit for wideband T/R modules has been proposed. It employs quadrature couplers and gate-and-drain-driven HPAs to remove circulators or T/R switches from a conventional T/R module, and T/R switching is made with controlling biasing conditions of the FETs in HPAs. Furthermore, an optimum biasing condition and design of output matching circuit of the HPA have been studied to reduce loss in RX-mode, and the validity of the method has been confirmed by measurements.

  • An Asymmetrical Suspended Stripline Directional Coupler

    Osami ISHIDA  Yoji ISOTA  Moriyasu MIYAZAKI  Fumio TAKEDA  Norio TAKEUCHI  

     
    LETTER-Microwave Circuits

      Vol:
    E69-E No:4
      Page(s):
    333-334

    This letter describes a novel coupled-transmission-line directional coupler using an asymmetrical suspended stripline with unequal conducting strips on both sides of a dielectric substrate. The directional coupler has a rang of coupling values from 5 to 9 dB which is difficult to be realized by a conventional symmetrical suspended stripline coupler.

  • Metal 3D-Printed T-Junction Ortho-Mode-Transducer with an Offset Stepped Post

    Hidenori YUKAWA  Yu USHIJIMA  Motomi ABE  Takeshi OSHIMA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:1
      Page(s):
    56-63

    We propose a T-junction OMT consisting of an offset stepped post. The offset stepped post contributes to the matching of two rectangular ports at the short circuit, situated at the opposite side walls. The structure without conventional ridges is simple and makes it possible to achieve robust performance. We fabricated a proposed T-junction OMT in a single piece of an aluminum alloy, using a commercial metal 3D-printer. The simple and compact structure with robust performance is proposed to overcome the disadvantages of a 3D-printer, such as fabrication tolerance and surface roughness. The measured results demonstrated a return loss of 22dB and an insertion loss of 0.3dB, with a bandwidth of 8% in the K-band.