1-4hit |
Motomi ABE Hidenori YUKAWA Yu USHIJIMA Takuma NISHIMURA Takeshi OSHIMA Takeshi YUASA Naofumi YONEDA
A hexagonal waveguide branch line coupler suitable for additive manufacturing is proposed in this study, and its design method is elucidated. The additive manufactured Ka-band coupler exhibits characteristics similar to those of a machined coupler, but its weight and cost are reduced by 40% and 60%, respectively. Its effectiveness is also confirmed in this study.
Hidenori YUKAWA Yu USHIJIMA Motomi ABE Takeshi OSHIMA Naofumi YONEDA Moriyasu MIYAZAKI
We propose a T-junction OMT consisting of an offset stepped post. The offset stepped post contributes to the matching of two rectangular ports at the short circuit, situated at the opposite side walls. The structure without conventional ridges is simple and makes it possible to achieve robust performance. We fabricated a proposed T-junction OMT in a single piece of an aluminum alloy, using a commercial metal 3D-printer. The simple and compact structure with robust performance is proposed to overcome the disadvantages of a 3D-printer, such as fabrication tolerance and surface roughness. The measured results demonstrated a return loss of 22dB and an insertion loss of 0.3dB, with a bandwidth of 8% in the K-band.
Hidenori YUKAWA Yu USHIJIMA Naofumi YONEDA Moriyasu MIYAZAKI
We propose a 180-degree branch line coupler composed of two types of iris-loaded waveguides. The proposed coupler consists of two main transmission lines and branch lines with different electrical lengths. Based on optimal electrical lengths, a 180-degree output phase difference can be achieved without additional phase shifters. The two main lines with different electrical lengths are realized by capacitive and inductive iris-loaded waveguides. The size of the proposed coupler is nearly half that of the conventional 180-degree branch line coupler with additional phase shifters. Thus, the proposed coupler is of advantage with respect to the conventional one. We designed a proposed coupler in the K-band for satellite communication systems. The measurement results demonstrate a reflection of -20 dB, isolation of -20 dB, coupling response of -3.1+0.1 dB/-0.1 dB, and phase differences of 0+0.1 deg/-1.4 deg and -180+0.5 deg/-2.3 deg at a bandwidth of 8% in the K-band.
Hidenori YUKAWA Yu USHIJIMA Toru TAKAHASHI Toru FUKASAWA Yoshio INASAWA Naofumi YONEDA Moriyasu MIYAZAKI
A T-junction orthomode transducer (OMT) is a waveguide component that separates two orthogonal linear polarizations in the same frequency band. It has a common circular waveguide short-circuited at one end and two branch rectangular waveguides arranged in opposite directions near the short circuit. One of the advantages of a T-junction OMT is its short axial length. However, the two rectangular ports, which need to be orthogonal, have different levels of performance because of asymmetry. We therefore propose a uniaxially symmetrical T-junction OMT, which is configured such that the two branch waveguides are tilted 45° to the short circuit. The uniaxially symmetrical configuration enables same levels of performance for the two ports, and its impedance matching is easier compared to that for the conventional configuration. The polarization separation principle can be explained using the principles of orthomode junction (OMJ) and turnstile OMT. Based on calculations, the proposed configuration demonstrated a return loss of 25dB, XPD of 30dB, isolation of 21dB between the two branch ports, and loss of 0.25dB, with a bandwidth of 15% in the K band. The OMT was then fabricated as a single piece via 3D printing and evaluated against the calculated performance indices.