The search functionality is under construction.

Author Search Result

[Author] Masatake HANGAI(6hit)

1-6hit
  • X-Band GaN Chipsets for Cost-Effective 20W T/R Modules Open Access

    Jun KAMIOKA  Yoshifumi KAWAMURA  Ryota KOMARU  Masatake HANGAI  Yoshitaka KAMO  Tetsuo KODERA  Shintaro SHINJO  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/12/10
      Vol:
    E105-C No:5
      Page(s):
    194-202

    This paper reports on X-band Gallium Nitride (GaN) chipsets for cost-effective 20W transmit-receive (T/R) modules. The chipset components include a GaN-on-Si monolithic microwave integrated circuit (MMIC) driver amplifier (DA), a GaN-on-SiC high power amplifier (HPA) with GaAs matching circuits, a high-gain GaN-on-Si HPA with a GaAs output matching circuit, and a GaN-on-Si MMIC switch (SW). By utilizing either combination of the DA or single high-gain HPA, the configurations of two T/R module types can be realized. The GaN-on-Si MMIC DA demonstrates an output power of 6.4-7.4W, an associate gain of 22.3-24.6dB and a power added efficiency (PAE) of 32-36% over 9.0-11.0GHz. A GaN-on-SiC HPA with GaAs matching circuits exhibited an output power of 20-28W, associate gain of 7.8-10.7dB, and a PAE of 40-56% over 9.0-11.0GHz. The high-gain GaN-on-Si HPA with a GaAs output matching circuit exhibits an output power of 15-30W, associate gain of 27-30dB, and PAE of 26-33% over 9.0-11.0GHz. The GaN-on-Si MMIC switch demonstrates insertion losses of 1.1-1.3dB and isolation of 10.1-14.7dB over 8.0-11.5GHz. By employing cost-effective circuit configurations, the costs of these chipsets are estimated to be about half that of conventional chipsets.

  • GaN Amplifiers of Selectable Output Power Function with Semi-Custom Matching Networks

    Yutaro YAMAGUCHI  Masatake HANGAI  Shintaro SHINJO  Takaaki YOSHIOKA  Naoki KOSAKA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    682-690

    A methodology for obtaining semi-custom high-power amplifiers (HPAs) is described. The semi-custom concept pertains to the notion that a selectable output power is attainable by replacing only transistors. To compensate for the mismatch loss, a new output matching network that can be easily tuned by wiring is proposed. Design equations were derived to determine the circuit parameters and specify the bandwidth limitations. To verify this methodology, a semi-custom HPA with GaN HEMTs was fabricated in the S-band. A selectable output power from 240 to 150 W was successfully achieved while maintaining a PAE of over 50% in a 19% relative bandwidth.

  • Millimeter-Wave High-Power MMIC Switch with Multiple FET Resonators

    Masatake HANGAI  Tamotsu NISHINO  Morishige HIEDA  Kunihiro ENDO  Moriyasu MIYAZAKI  

     
    PAPER-Active Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1695-1701

    A millimeter-wave low-loss, high-isolation and high-power terminated MMIC switch is developed, and the design theory is formulated. Our invented switch is designed based on a non-linear relationship between the parallel resistance of an FET and its gate width. Our measurements of the parallel resistance with different gate width have revealed that the resistance is inverse proportion to a square of the gate width. By using this relationship, we have found the fact that the multiple FET resonators with smaller gate width and high inductance elements realize high-Q performance for the same resonant frequency. Since the power handling capability is determined by the total gate width, our switch circuit could reduce its insertion loss, keeping the high-power performance. We additionally describe the design method of this switch circuit. The relationships between the gate widths of the FETs and the electrical performances are described analytically. The required gate widths of the FETs for handling high power signal are represented, and the design equations to obtain lower insertion loss and higher isolation performances keeping high power capability are presented. To verify this methodology, we fabricated a MMIC switch. The MMIC had insertion loss of 2.86 dB, isolation of 37 dB and power handling capability of more than 33 dBm at 32 GHz.

  • High-Power Protection Switch Using Stub/Line Selectable Circuits

    Masatake HANGAI  Kazuhiko NAKAHARA  Mamiko YAMAGUCHI  Morishige HIEDA  

     
    PAPER

      Vol:
    E94-C No:5
      Page(s):
    814-819

    High-power protection switch utilizing a new stub/line selectable configuration is presented. By employing the proposed circuit topology, the insertion loss at receiving mode and the power handling capability at transmitting mode can be independently designed. Therefore, the proposed circuit is able to achieve low insertion loss at receiving mode while keeping high-power performance at transmitting mode. To verify this methodology, MMIC switch has been fabricated in Ka-band. The circuit has achieved the insertion loss of 2 dB, the isolation of 25 dB, and the power handling capability of 40 dBm at 5% bandwidth.

  • Micromachined RF Devices for Concurrent Integration on Dielectric-Air-Metal Structures

    Tamotsu NISHINO  Masatake HANGAI  Yukihisa YOSHIDA  Sang-Seok LEE  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1111-1118

    This paper proposes a concept of a concurrent configuration of radio-frequency (RF) micromachined and micro-electro-mechanical-system (MEMS) devices. The devices are fabricated on an originally developed dielectric-air-metal (DAM) structure that suits for fabrication of various devices all together. The DAM structure can propose membrane-supported hollow elements embedded in a silicon wafer by creating cavities in it. Even though the devices have different cavity depths, they are processed by just one planarization. In addition, since the structure is worked only from the front side of the wafer, no flipping process as well as no wafer bonding process is required, and the fact realizes low-cost concurrent integration. As applications of the DAM structures, a hollow grounded co-planar waveguide, lumped element circuitries, and an MEMS switch are demonstrated.

  • High-Power GaN HEMT T/R Switch Using Asymmetric Series-Shunt/Shunt Configuration

    Masatake HANGAI  Yukinobu TARUI  Yoshitaka KAMO  Morishige HIEDA  Masatoshi NAKAYAMA  

     
    PAPER-Active Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1533-1538

    High-power T/R switch with GaN HEMT technology is successfully developed, and the design theory is formulated. The proposed switch employs an asymmetric series-shunt/shunt configuration. Because the power handling capability of the proposed switch is mainly dependent of the breakdown voltage of FETs, the proposed circuit can make full use of the characteristics of the GaN HEMT technology. The switch has a high degree of freedom for the FET gate widths, so the low insertion loss can be obtained while keeping high-power performances. To verify this methodology, T/R switch has been fabricated in X-band. The fabricated switch has demonstrated an insertion loss of 1.8 dB in Rx-mode, 1.2 dB in Tx-mode and power handling capability of 20 W in 53% bandwidth.