The search functionality is under construction.

Author Search Result

[Author] Naohisa UEHARA(2hit)

1-2hit
  • A Millimeter-Wave Pulse Transmitter with a Harmonic Mixer

    Kenji KAWAKAMI  Hiroshi IKEMATSU  Koichi MATSUO  Naohisa UEHARA  Moriyasu MIYAZAKI  Tadashi TAKAGI  

     
    PAPER

      Vol:
    E88-C No:10
      Page(s):
    1947-1951

    This paper describes a millimeter-wave pulse transmitter with a 38 GHz-band Voltage Controlled Oscillator (VCO) and a 77/38 GHz-band harmonic mixer. This harmonic mixer works as both of a pulse modulator and a multiplier. This configuration of the transmitter is very simple, and can be applied to high-speed pulse modulation like Ultra Wide Band. By using the harmonic mixer, furthermore, a fluctuation of the load impedance of the 38 GHz VCO can be reduced. Compared with the conventional configuration, the required amount of isolation between the VCO and the load has been able to be reduced by more than 30 dB as a result of the experiment in a millimeter-wave band.

  • Target Distance and Velocity Measurement Algorithm to Reduce False Targets in FMCW Automotive Radar

    Masashi MITSUMOTO  Naohisa UEHARA  Shigeho INATSUNE  Tetsuo KIRIMOTO  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    1983-1989

    A Frequency Modulated Continuous Wave (FMCW) radar using only in-phase channel is advantageous for automotive applications. In this radar, it is necessary to search the pairs of beat frequencies in an up-chirp mode and a down-chirp mode to measure the distances and the velocity of multiple targets similarly to a FMCW radar with both of in-phase and quadrature-phase channel. However the number of combinations to search the pairs is larger than that for the FMCW radar with both of in-phase and quadrature-phase channel. Therefore, false targets by mistaking the combination of these pairs increase. In this paper, we propose a novel measurement algorithm to reduce the false targets. We extract only the beat frequencies of the relatively moving targets using the differential frequency power spectrum of the up-chirp mode and the down-chirp mode. We can reduce the number of selected incorrect pairs by separating the stationary targets and the moving targets. We have conducted some simulations to confirm the capability of the proposed measurement algorithm. It was shown that the false target appearance probability is reduced without significant deterioration of the target detection probability.