The search functionality is under construction.

Author Search Result

[Author] Shoichi NARAHASHI(19hit)

1-19hit
  • A Low-Loss 5 GHz Bandpass Filter Using HTS Quarter-Wavelength Coplanar Waveguide Resonators

    Hideyuki SUZUKI  Zhewang MA  Yoshio KOBAYASHI  Kei SATOH  Shoichi NARAHASHI  Toshio NOJIMA  

     
    PAPER-Microwave Devices and Systems

      Vol:
    E85-C No:3
      Page(s):
    714-719

    A new structure of a low-loss high temperature superconducting (HTS) filter is proposed by using quarter-wavelength coplanar waveguide (CPW) resonators. A 4-pole Chebyshev band-pass filter with the center frequency 5.0 GHz and the 0.01 dB-ripple fractional bandwidth 3.2% is designed based on the theory of direct-coupled resonator filters using K- and J-inverters. This filter is fabricated by using a high-Tc superconductive YBCO film deposited on a MgO dielectric substrate. The frequency response of the filter measured at 60 K agrees very well with the theoretical one. The insertion loss is 0.22 dB. The insertion loss of this filter is the lowest in HTS-CPW filters presented so far.

  • Recent Activities of Japanese Microwave Industry Open Access

    Koji YAMANAKA  Yasunori SUZUKI  Shoichi NARAHASHI  Takaya WADA  Makoto KAWASHIMA  Ken TAKEI  Kazutaka TAKAGI  Atsushi HONDA  Zhengyi LI  Liang ZHOU  Yoji OHASHI  Wataru HATTORI  Yusuke TAKAHASHI  

     
    INVITED PAPER

      Vol:
    E98-C No:7
      Page(s):
    621-629

    This invited paper is dedicated to introduce recent activities of Japanese microwave industries. 7 topics are introduced from major microwave companies in Japan. All topics are from invited talks in 2014 Asia-Pacific microwave conference (APMC2014) held in Sendai, November, 2014.

  • IMD Components Compensation Conditions for Dual-Band Feed-Forward Power Amplifier

    Yasunori SUZUKI  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/05/01
      Vol:
    E103-C No:10
      Page(s):
    434-444

    This paper presents analysis results of the intermodulation distortion (IMD) components compensation conditions for dual-band feed-forward power amplifier (FFPA) when inputting dual-band signals simultaneously. The signal cancellation loop and distortion cancellation loop of the dual-band FFPA have frequency selective adjustment paths which consist of filter and vector regulator. The filter selects the desired frequency component and suppresses the undesired frequency component in the desired frequency selective adjustment path. The vector regulators repeatedly adjust the amplitude and phase values of the composite components for the desired and suppressed undesired frequency components. In this configuration, the cancellation levels of the signal cancellation loop and distortion cancellation loop are depending on the amplitude and phase errors of the vector regulator. The analysis results show that the amplitude and phase errors of the desired frequency component almost become independent that of the undesired frequency component in a weak non-linearity condition, when the isolation between the desired band and the undesired band given by the filter is more than 40 dB. The amplitude errors of the desired frequency component are dependent on that of the undesired frequency component in a strong non-linear conditions when the isolation level sets as above. A 1-W-class signal cancellation loop and 20-W-class FFPA are fabricated for 1.7-GHz and 2.1-GHz bands simultaneous operation. The experimental results show that the analysis results are suitable in the experimental conditions. From these investigations, the analysis results can provide a commercially available dual-band FFPA. To our best knowledge, this is first analysis results for the dual-band FFPA.

  • 26 GHz Band Extremely Low-Profile Front-End Configuration Employing Integrated Modules of Patch Antennas and SIW Filters

    Yasunori SUZUKI  Takana KAHO  Kei SATOH  Hiroshi OKAZAKI  Maki ARAI  Yo YAMAGUCHI  Shoichi NARAHASHI  Hiroyuki SHIBA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1097-1107

    This paper presents an extremely low-profile front-end configuration for a base station at quasi-millimeter wave band. It consists of integrated modules of patch antennas and substrate integrated waveguide filters using two printed circuit boards, and transmitter modules using compact GaAs pHEMT three-dimensional monolithic millimeter-wave integrated circuits. The transmitter modules are located around the integrated modules. This is because the proposed front-end configuration can attain extremely low profile, and band-pass filtering performance at quasi-millimeter wave band. As a demonstration of the proposed configuration, 26-GHz-band 4-by-4 elements front-end module is fabricated and tested. The fabricated module has the thickness of about 1 cm, while that offers the attenuation of more than 30 dB with 2 GHz offset from 26 GHz. The proposed configuration can provide base station that can be effective in offering sub-millimeter wave and millimeter-wave bands broadband services for 5G mobile communications systems.

  • PAPR Reduction Method for Digital Predistortion Linearizer Compensating for Frequency Dependent IMD Components

    Yasunori SUZUKI  Junya OHKAWARA  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:2
      Page(s):
    118-125

    This paper proposes a method for reducing the peak-to-average power ratio (PAPR) at the output signal of a digital predistortion linearizer (DPDL) that compensates for frequency dependent intermodulation distortion (IMD) components. The proposed method controls the amplitude and phase values of the frequency components corresponding to the transmission bandwidth of the output signal. A DPDL employing the proposed method simultaneously provides IMD component cancellation of out-of-band components and PAPR reduction at the output signal. This paper identifies the amplitude and phase conditions to minimize the PAPR. Experimental results based on a 2-GHz band 1-W class power amplifier show that the proposed method improves the drain efficiency of the power amplifier when degradation is allowed in the error vector magnitude. To the best knowledge of the authors, this is the first PAPR reduction method for DPDL that reduces the PAPR while simultaneously compensating for IMD components.

  • Compact Tunable Isolator with a Variable Capacitor

    Takayuki FURUTA  Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:1
      Page(s):
    84-92

    This paper presents a novel isolator that employs a varactor that tunes the operating frequency for use in future multi-band mobile handsets. The proposed isolator employs only one varactor for compactness and has a three-fold symmetric structure to reduce the parasitic reactance at each port. Analytical and experimental results clarify the tuning range of the proposed isolator. This paper presents the fundamental characteristics of the proposed isolator such as the insertion loss, isolation, and adjacent channel leakage ratio (ACLR) using a W-CDMA signal. The impact of the proposed isolator on the system performance is described based on experimental evaluation of the ACLR with a multi-band transmission system consisting of a power amplifier and the proposed isolator.

  • Highly Efficient Multi-Band Power Amplifier Employing Reconfigurable Matching and Biasing Networks

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    949-957

    This paper presents a highly efficient multi-band power amplifier (PA) with a novel reconfigurable configuration. It consists of band-switchable matching networks (BS-MNs) and a biasing network (BS-BN) that are available for multi-band operation. BS-MNs with a susceptance block (SB) require a shorter transmission line (TL) than those without the SB at some target impedances. This paper theoretically derives the relationships of the required TL lengths for the BS-MN with or without the SB and the target impedances. The required TL lengths at the target impedances are evaluated numerically in order to discuss the advantages of the proposed configuration. The BS-BN employing switches for band switching can supply DC power to an amplification device without additional DC power dissipation because the DC bias current does not flow through the switches. Numerical analyses confirm that a BS-BN can be configured with low loss in multiple bands. Based on the proposed configuration, a 1/1.5/1.9/2.5-GHz quad-band reconfigurable PA is designed and fabricated employing RF microelectro mechanical systems switches and partitioned low temperature co-fired ceramics substrates. The fabricated 1 W-class PA achieves a high output power of greater than 30 dBm and a maximum power added efficiency of over 40% in all operating modes.

  • Resonant Frequency and Bandwidth Tunable Ring Resonator Using GaAs FET SPST Switches

    Kunihiro KAWAI  Hiroshi OKAZAKI  Shoichi NARAHASHI  Noriharu SUEMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:5
      Page(s):
    388-398

    This paper presents a theoretical analysis and experimental confirmation of a tunable ring resonator that can independently change its resonant frequency and bandwidth. The tunable ring resonator comprises a ring resonator, three tunable capacitors, and switches. The resonant frequency changes according to the capacitance of tunable capacitors, and the bandwidth varies by changing the state of the switches. The unique feature of the resonator is that the resonant frequency remains steady when the bandwidth is changed. The fundamental characteristics are shown based on linear circuit simulation and electromagnetic simulation results. The resonator is fabricated using GaAs FET single-pole single-throw switches. The fabricated resonator changes the resonant frequency from 1.5 GHz to 2.0 GHz and the fractional bandwidth from 5% to 30%.

  • Low-Loss Matching Network Design for Band-Switchable Multi-Band Power Amplifier Open Access

    Atsushi FUKUDA  Takayuki FURUTA  Hiroshi OKAZAKI  Shoichi NARAHASHI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1172-1181

    This paper presents a novel design scheme for a band-switchable multi-band power amplifier (BS-MPA). A key point of the design scheme is configuring multi-section reconfigurable matching networks (MR-MNs) optimally in terms of low loss matching in multiple frequency bands from 0.7 to 2.5 GHz. The MR-MN consists of several matching sections, each of which has a matching block connected to a transmission line via a switch. Power dissipation at an actual on-state switch results in the insertion loss of the MR-MN and depends on how the impedance is transformed by the MR-MN. The proposed design scheme appropriately transforms the impedance of a high power transistor to configure a low loss MR-MN. Numerical analyses show quantitative improvement in the loss using the proposed scheme. A 9-band 3-stage BS-MPA is newly designed following the proposed scheme and fabricated on a multi-layer low temperature co-fired ceramic substrate for compactness. The BS-MPA achieves a gain of over 30 dB, an output power of greater than 33 dBm and a power added efficiency of over 40% at the supply voltage of 4 V in each operating band.

  • A Novel Compact HTS Interdigital Bandpass Filter Using CPW Quarter-Wavelength Resonators

    Zhewang MA  Tamio KAWAGUCHI  Yoshio KOBAYASHI  Daisuke KOIZUMI  Kei SATOH  Shoichi NARAHASHI  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    140-144

    A novel high temperature superconducting interdigital bandpass filter is proposed by using coplanar waveguide quarter-wavelength resonators. The CPW resonators are arranged in parallel, and consequently the filter becomes very compact. The filter is a 5-pole Chebyshev BPF with a midband frequency of 5.0 GHz and an equal-ripple fractional bandwidth of 3.2%. It is fabricated using a YBCO film deposited on an MgO substrate. The measured filtering characteristics agree well with EM simulations and show a low insertion loss in spite of the small size of the filter.

  • Tunable Resonator Employing Comb-shaped Transmission Line and Semiconductor Switches

    Kunihiro KAWAI  Daisuke KOIZUMI  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E97-C No:8
      Page(s):
    795-802

    This paper presents a simple-structured tunable resonator employing semiconductor switches that can change its resonant frequency discretely but precisely. The tunable resonator comprises a transmission line with a comb-shaped pattern and multiple single-pole single-throw (SPST) switches placed between the teeth of the comb-shaped pattern. The resonator changes its resonant frequency according to the switch states, by controlling the path length carrying a high frequency current. The characteristics of the proposed resonator are evaluated through both method of moment electromagnetic simulation and fabrication, using GaAs FET SPST switches. The fabricated resonator changes its resonant frequency from 1.63,GHz to 1.85,GHz. This paper also introduces two circuit designs based on the proposed resonator that expands the tuning range of the resonant frequency or the number of resonant frequencies to be obtained.

  • Parallel Ring-Line Rat-Race Circuit with Very Loose Coupling Utilizing Composite Right-/Left-Handed Transmission Lines

    Tadashi KAWAI  Yuma SUMITOMO  Akira ENOKIHARA  Isao OHTA  Kei SATOH  Yasunori SUZUKI  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    965-971

    In this paper, we consider a parallel ring-line rat-race circuit realized by replacing some parts of the ring-lines with composite right-/left-handed transmission lines (CRLH-TLs). For a conventional rat-race circuit, the minimum coupling factor is limited by the highest impedance of the ring-lines that can be manufactured by general printed circuit board (PCB) technologies. However, the coupling factor of the parallel ring-line type rat-race circuit proposed in this paper is determined by the difference between the admittances of the parallel ring-lines. As a result of designing parallel ring-line rat-race circuits having coupling factors of $-20$ and $-30$,dB for an operation frequency of 4,GHz, the proposed rat-race circuit realizes broadband characteristics of about 35.5% according to the numerical results for the $-20$,dB circuit. Furthermore, broadband characteristics including reflection, isolation, and couplings can be maintained for the fabricated $-20$,dB rat-race circuit up to an input power of 40,dBm.

  • Broadside Coupling High-Temperature Superconducting Dual-Band Bandpass Filter

    Yuta TAKAGI  Kei SATOH  Daisuke KOIZUMI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:8
      Page(s):
    1033-1040

    This paper proposes a novel high-temperature superconducting dual-band bandpass filter (HTS-DBPF), that employs a broadside coupling structure, in which quarter-wavelength resonators are formed on opposite sides of each substrate. This structure provides a dual-band operation of the BPF and flexibility, in the sense of having a wide range in selecting two center passband frequencies of the HTS-DBPF. This paper employs the ratio of the lower and higher center passband frequencies, α, as a criterion for evaluating the flexibility. The obtained α ranges are from 1 to 4.7, which are the widest for DBPFs for mobile communications applications, to the best knowledge of the authors. This paper presents a 2.4-/2.9-GHz band HTS-DBPF, as an experimental example, using a YBCO film deposited on an MgO substrate. The measured frequency responses of the HTS-DBPF agree with the electromagnetic simulated results. Measurement and simulation results confirm that the proposed filter architecture is effective in configuring a DBPF that can set each center passband frequency widely.

  • Novel Configuration for Phased-Array Antenna System Employing Frequency-Controlled Beam Steering Method

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/10
      Vol:
    E105-C No:12
      Page(s):
    740-749

    This paper presents a novel frequency-controlled beam steering scheme for a phased-array antenna system (PAS). The proposed scheme employs phase-controlled carrier signals to form the PAS beam. Two local oscillators (LOs) and delay lines are used to generate the carrier signals. The carrier of one LO is divided into branches, and then the divided carriers passing through the corresponding delay lines have the desired phase relationship, which depends on the oscillation frequency of the LO. To confirm the feasibility of the scheme, four-branch PAS transmitters are configured and tested in a 10-GHz frequency band. The results verify that the formed beam is successfully steered in a wide range, i.e., the 3-dB beamwidth of approximately 100 degrees, using LO frequency control.

  • Theoretical Analysis of Center Frequency and Bandwidth Tunable Resonator Employing Coupled Line and Switches

    Kunihiro KAWAI  Hiroshi OKAZAKI  Shoichi NARAHASHI  Mizuki MOTOYOSHI  Noriharu SUEMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:8
      Page(s):
    612-621

    This paper presents a theoretical analysis of a tunable resonator using a coupled line and switches for the first time. The tunable resonator has the capability to tune its resonant frequency and bandwidth. The resonator has two suitable features on its tunable capability. The first feature is that the resonator retains its resonant frequency during bandwidth tuning. The second feature is that the on-state switch for tuning the bandwidth does not affect the insertion loss at the resonant frequency. These features are theoretically confirmed by its mathematically derived input impedance. The results from electromagnetic simulation and measurement of the fabricated tunable resonator also confirm these features. The fabricated tunable resonator changes the resonant frequency from 2.6 GHz to 6.4 GHz and bandwidth between 9% and 55%.

  • 2-GHz Band Cryogenic Receiver Front End for Mobile Communication Base Station Systems

    Toshio NOJIMA  Shoichi NARAHASHI  Tetsuya MIMURA  Kei SATOH  Yasunori SUZUKI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1834-1843

    An ultra low-noise and highly selective, experimental 2-GHz band cryogenic receiver front end (CRFE) has been newly developed for cellular base stations. It utilizes a high-Q superconducting filter, a very low noise cryogenic amplifier, and a highly reliable cooler that is very compact. Fundamental design of the CRFE is investigated. First, the equivalent noise temperature of the CRFE and the effect of improving CRFE sensitivity on base station reception are discussed. Next, essential technologies and fundamental characteristics of each component are described. Finally, influence of antenna noise, such as ground noise and man-made noise, is estimated through field tests both in urban and suburban areas.

  • Experimental Investigation on RF Characteristics of Cryogenically-Cooled 3W-Class Receiver Amplifier Employing GaN HEMT with Blue Light LED for Mobile Base Stations

    Yasunori SUZUKI  Shoichi NARAHASHI  Toshio NOJIMA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    930-937

    This paper presents an experimental investigation on the RF characteristics of a 3W-class cryogenically-cooled receiver amplifier employing a gallium-nitride high electron mobility transistor (GaN HEMT) with a blue light for mobile base stations. In general, a cryogenically-cooled receiver amplifier using a GaN HEMT exhibits unstable DC characteristics similar to those found in the current collapse phenomenon because the GaN HEMT loses thermal energy at cryogenic temperatures. The fabricated cryogenically-cooled receiver amplifier achieves stable DC characteristics by injecting blue light into the GaN HEMT instead of thermal energy. Experimental results show that the amplifier achieves fine stable DC characteristics for deviation in the drain-source current from 42% to 5% and RF characteristics for a maximum power added efficiency from 58% to 68% without and with the blue light at 60,K. The fabricated amplifier is effective in reducing the power consumption at cryogenic temperatures. To the best of our knowledge, this paper is the first report regarding RF characteristics of a cryogenically-cooled receiver amplifier using a blue light for mobile base stations.

  • Linearization Technologies for High Efficiency Power Amplifier of Cellular Base Stations Open Access

    Yasunori SUZUKI  Shoichi NARAHASHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/24
      Vol:
    E104-C No:10
      Page(s):
    534-542

    This paper presents linearization technologies for high efficiency power amplifiers of cellular base stations. These technologies are important to actualizing highly efficient power amplifiers that reduce power consumption of the base station equipment and to achieving a sufficient non-linear distortion compensation level. It is well known that it is very difficult for a power amplifier using linearization technologies to achieve simultaneously high efficiency and a sufficient non-linear distortion compensation level. This paper presents two approaches toward addressing this technical issue. The first approach is a feed-forward power amplifier using the Doherty amplifier as the main amplifier. The second approach is a digital predistortion linearizer that compensates for frequency dependent intermodulation distortion components. Experimental results validate these approaches as effective for providing power amplification for base stations.

  • FOREWORD Open Access

    Shoichi NARAHASHI  

     
    FOREWORD

      Vol:
    E97-C No:10
      Page(s):
    922-922