The search functionality is under construction.

Author Search Result

[Author] Maki ARAI(7hit)

1-7hit
  • A Study on Optimal Beam Patterns for Single User Massive MIMO Transmissions Open Access

    Maki ARAI  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/30
      Vol:
    E102-B No:2
      Page(s):
    324-336

    This paper proposes optimal beam patterns of analog beamforming for SU (Single User) massive MIMO (Multi-Input Multi-Output) transmission systems. For hybrid beamforming in SU massive MIMO systems, there are several design parameters such as beam patterns, the number of beams (streams), the shape of array antennas, and so on. In conventional hybrid beamforming, rectangular patch array antennas implemented on a planar surface with linear phase shift beam patterns have been used widely. However, it remains unclear whether existing configurations are optimal or not. Therefore, we propose a method using OBPB (Optimal Beam Projection Beamforming) for designing configuration parameters of the hybrid beamforming. By using the method, the optimal beam patterns are derived first, and are projected on the assumed surface to calculate the achievable number of streams and the resulting channel capacity. The results indicate OBPB with a spherical surface yields at least 3.5 times higher channel capacity than conventional configurations.

  • Optimal Design Method of MIMO Antenna Directivities and Corresponding Current Distributions by Using Spherical Mode Expansion

    Maki ARAI  Masashi IWABUCHI  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/03/15
      Vol:
    E100-B No:10
      Page(s):
    1891-1903

    This paper proposes a new methodology to design optimal antennas for MIMO (Multi-Input Multi-Output) communication systems by using spherical mode expansion. Given spatial channel properties of a MIMO channel, such as the angular profile at both sides, the optimal MIMO antennas should provide the largest channel capacity with a constraint of the limited implementation space (volume). In designing a conventional MIMO antenna, first the antenna structure (current distribution) is determined, second antenna directivity is calculated based on the current distribution, and thirdly MIMO channel capacity is calculated by using given angular profiles and obtained antenna directivity. This process is repeated by adjusting the antenna structure until the performance satisfies a predefined threshold. To the contrary, this paper solves the optimization problem analytically and finally gives near optimal antenna structure (current distribution) without any greedy search. In the proposed process, first the optimal directivity of MIMO antennas is derived by applying spherical mode expansion to the angular profiles, and second a far-near field conversion is applied on the derived optimal directivity to achieve near optimal current distributions on a limited surface. The effectiveness of the proposed design methodology is validated via numerical calculation of MIMO channel capacity as in the conventional design method while giving near optimal current distribution with constraint of an antenna structure derived from proposed methodology.

  • 26 GHz Band Extremely Low-Profile Front-End Configuration Employing Integrated Modules of Patch Antennas and SIW Filters

    Yasunori SUZUKI  Takana KAHO  Kei SATOH  Hiroshi OKAZAKI  Maki ARAI  Yo YAMAGUCHI  Shoichi NARAHASHI  Hiroyuki SHIBA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1097-1107

    This paper presents an extremely low-profile front-end configuration for a base station at quasi-millimeter wave band. It consists of integrated modules of patch antennas and substrate integrated waveguide filters using two printed circuit boards, and transmitter modules using compact GaAs pHEMT three-dimensional monolithic millimeter-wave integrated circuits. The transmitter modules are located around the integrated modules. This is because the proposed front-end configuration can attain extremely low profile, and band-pass filtering performance at quasi-millimeter wave band. As a demonstration of the proposed configuration, 26-GHz-band 4-by-4 elements front-end module is fabricated and tested. The fabricated module has the thickness of about 1 cm, while that offers the attenuation of more than 30 dB with 2 GHz offset from 26 GHz. The proposed configuration can provide base station that can be effective in offering sub-millimeter wave and millimeter-wave bands broadband services for 5G mobile communications systems.

  • Alignment Tolerance in Multiple-Stream Transmission Using Orthogonal Directivities under Line-of-Sight Environments

    Maki ARAI  Tomohiro SEKI  Ken HIRAGA  Kazumitsu SAKAMOTO  Tadao NAKAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:6
      Page(s):
    1362-1370

    A method for increasing alignment tolerance in simple multiple-stream transmission is described. Its use of π-shifted antenna directivity phase enables it to cancel interference even when antenna placement deviations occur. The interference cancellation by using π-shifted directivities provides higher alignment tolerance than that with conventional fixed weight methods. It also provides smaller channel gain variation than can be obtained using fixed weights even when antenna displacement occurs. An objective function is described that is determined by the alignment tolerance. The function is defined to maximize the alignment tolerance. The method's validity is confirmed by an experimental analysis of two-stream transmission in which the alignment tolerance of the proposed method is compared to that of conventional fixed weight methods.

  • Rectifier Circuit using High-Impedance Feedback Line for Microwave Wireless Power Transfer Systems Open Access

    Seiya MIZUNO  Ryosuke KASHIMURA  Tomohiro SEKI  Maki ARAI  Hiroshi OKAZAKI  Yasunori SUZUKI  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-C No:10
      Page(s):
    552-558

    Research on wireless power transmission technology is being actively conducted, and studies on spatial transmission methods such as SSPS are currently underway for applications such as power transfer to the upper part of steel towers and power transfer to flying objects such as drones. To enable such applications, it is necessary to examine the configuration of the power-transfer and power-receiving antennas and to improve the RF-DC conversion efficiency (hereinafter referred to as conversion efficiency) of the rectifier circuit on the power-receiving antenna. To improve the conversion efficiency, various methods that utilize full-wave rectification rather than half-wave rectification have been proposed. However, these come with problems such as a complicated circuit structure, the need for additional capacitors, the selection of components at high frequencies, and a reduction in mounting yield. In this paper, we propose a method to improve the conversion efficiency by loading a high-impedance microstrip line as a feedback line in part of the rectifier circuit. We analyzed a class-F rectifier circuit using circuit analysis software and found that the conversion efficiency of the conventional configuration was 54.2%, but the proposed configuration was 69.3%. We also analyzed a measuring circuit made with a discrete configuration in the 5.8-GHz band and found that the conversion efficiency was 74.7% at 24dBm input.

  • Spatial Division Transmission without Signal Processing for MIMO Detection Utilizing Two-Ray Fading

    Ken HIRAGA  Kazumitsu SAKAMOTO  Maki ARAI  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2491-2501

    This paper presents a spatial division (SD) transmission method based on two-ray fading that dispenses with the high signal processing cost of multiple-input and multiple-output (MIMO) detection and antennas with narrow beamwidth. We show the optimum array geometries as functions of the transmission distance for providing a concrete array design method. Moreover, we clarify achievable channel capacity considering reflection coefficients that depend on the polarization, incident angle, and dielectric constant. When the ground surface is conductive, for two- and three-element arrays, channel capacity is doubled and tripled, respectively, over that of free space propagation. We also clarify the application limit of this method for a dielectric ground by analyzing the channel capacity's dependency on the dielectric constant. With this method, increased channel capacity by SD transmission can be obtained merely by placing antennas of wireless transceiver sets that have only SISO (single-input and single-output) capability in a two-ray propagation environment. By using formulations presented in this paper for the first time and adding discussions on the adoption of polarization multiplexing, we clarify antenna geometries of SD transmission systems using polarization multiplexing for up to six streams.

  • Orthogonalized Directional MIMO Transmission Using Higher Order Mode Microstrip Antennas

    Maki ARAI  Tomohiro SEKI  Ken HIRAGA  Kazumitsu SAKAMOTO  Hideki TOSHINAGA  Tadao NAKAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    48-57

    Multiple-input multiple-output (MIMO) technology is a useful means of achieving the higher data rates needed in the latest wireless devices. However, weighting calculations for MIMO transmission become complicated when there are a large number of antennas. Thus, developing a simpler way to transmit and receive multiple streams is an idea worth considering. With this in mind, we propose a spatial division method using orthogonal directivities formed by using higher order modes of rectangular microstrip antennas. Each of them is formed by one antenna element so that channels are orthogonalized only by antennas. We verify antenna radiation characteristics by using higher order mode microstrip antennas and confirm that orthogonal directivities are obtained with them. Measurement of two stream transmission reveals that the method achieves almost the same channel capacity as that of an eigenmode-beamforming method because of the high multiplexing gain it achieves.