The search functionality is under construction.

Author Search Result

[Author] Masashi IWABUCHI(7hit)

1-7hit
  • Optimal Design Method of MIMO Antenna Directivities and Corresponding Current Distributions by Using Spherical Mode Expansion

    Maki ARAI  Masashi IWABUCHI  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/03/15
      Vol:
    E100-B No:10
      Page(s):
    1891-1903

    This paper proposes a new methodology to design optimal antennas for MIMO (Multi-Input Multi-Output) communication systems by using spherical mode expansion. Given spatial channel properties of a MIMO channel, such as the angular profile at both sides, the optimal MIMO antennas should provide the largest channel capacity with a constraint of the limited implementation space (volume). In designing a conventional MIMO antenna, first the antenna structure (current distribution) is determined, second antenna directivity is calculated based on the current distribution, and thirdly MIMO channel capacity is calculated by using given angular profiles and obtained antenna directivity. This process is repeated by adjusting the antenna structure until the performance satisfies a predefined threshold. To the contrary, this paper solves the optimization problem analytically and finally gives near optimal antenna structure (current distribution) without any greedy search. In the proposed process, first the optimal directivity of MIMO antennas is derived by applying spherical mode expansion to the angular profiles, and second a far-near field conversion is applied on the derived optimal directivity to achieve near optimal current distributions on a limited surface. The effectiveness of the proposed design methodology is validated via numerical calculation of MIMO channel capacity as in the conventional design method while giving near optimal current distribution with constraint of an antenna structure derived from proposed methodology.

  • 5G Experimental Trials for Ultra-Reliable and Low Latency Communications Using New Frame Structure

    Masashi IWABUCHI  Anass BENJEBBOUR  Yoshihisa KISHIYAMA  Guangmei REN  Chen TANG  Tingjian TIAN  Liang GU  Yang CUI  Terufumi TAKADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/08/20
      Vol:
    E102-B No:2
      Page(s):
    381-390

    The fifth generation mobile communications (5G) systems will need to support the ultra-reliable and low-latency communications (URLLC) to enable future mission-critical applications, e.g., self-driving cars and remote control. With the aim of verifying the feasibility of URLLC related 5G requirements in real environments, field trials of URLLC using a new frame structure are conducted in Yokohama, Japan. In this paper, we present the trial results and investigate the impact of the new frame structure and retransmission method on the URLLC performance. To reduce the user-plane latency and improve the packet success probability, a wider subcarrier spacing, self-contained frame structure, and acknowledgement/negative acknowledgement-less (ACK/NACK-less) retransmission are adopted. We verify the feasibility of URLLC in actual field tests using our prototype test-bed while implementing these techniques. The results show that for the packet size of 32 bytes the URLLC related requirements defined by the 3GPP are satisfied even at low signal-to-noise ratios or at non-line-of-sight transmission.

  • Smart Radio Environments with Intelligent Reflecting Surfaces for 6G Sub-Terahertz-Band Communications Open Access

    Yasutaka OGAWA  Shuto TADOKORO  Satoshi SUYAMA  Masashi IWABUCHI  Toshihiko NISHIMURA  Takanori SATO  Junichiro HAGIWARA  Takeo OHGANE  

     
    INVITED PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-B No:9
      Page(s):
    735-747

    Technology for sixth-generation (6G) mobile communication system is now being widely studied. A sub-Terahertz band is expected to play a great role in 6G to enable extremely high data-rate transmission. This paper has two goals. (1) Introduction of 6G concept and propagation characteristics of sub-Terahertz-band radio waves. (2) Performance evaluation of intelligent reflecting surfaces (IRSs) based on beamforming in a sub-Terahertz band for smart radio environments (SREs). We briefly review research on SREs with reconfigurable intelligent surfaces (RISs), and describe requirements and key features of 6G with a sub-Terahertz band. After that, we explain propagation characteristics of sub-Terahertz band radio waves. Important feature is that the number of multipath components is small in a sub-Terahertz band in indoor office environments. This leads to an IRS control method based on beamforming because the number of radio waves out of the optimum beam is very small and power that is not used for transmission from the IRS to user equipment (UE) is little in the environments. We use beams generated by a Butler matrix or a DFT matrix. In simulations, we compare the received power at a UE with that of the upper bound value. Simulation results show that the proposed method reveals good performance in the sense that the received power is not so lower than the upper bound value.

  • Frame Collision Reduction Method Employing Adaptive Transmission Control for IEEE802.11 Wireless LAN System

    Akira KISHIDA  Masashi IWABUCHI  Toshiyuki SHINTAKU  Takeshi ONIZAWA  Tetsu SAKATA  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1790-1799

    The IEEE 802.11 distributed coordinated function (DCF) adopts carrier sense multiple access with collision avoidance (CSMA/CA) as its medium access control (MAC) protocol. In a wireless local area network (WLAN) stations (STAs) congested situation, the performance of the WLAN system is significantly degraded due to a collision between the STAs. In this paper, we propose a simple method that decreases the number of frame collisions. After a successful transmission, the proposed method refrains from transmission during certain time which is defined as post-inter-frame space (Post-IFS). This mechanism improves the system performance including the throughput characteristics and access delay by reducing the number of competing STAs. The length of the Post-IFS is a key factor in improving the system performance for the proposed method. If the access point (AP) can estimate the optimal value of the Post-IFS, collision-free operation similar to that in centralized control is performed. Even if the optimal Post-IFS is not estimated, the number of competing STAs and the collision probability are decreased. Computer simulations verify that the proposed method achieves 40% higher system throughput compared to the conventional CSMA/CA for a network with 50 STAs.

  • A New Simple Packet Combining Scheme Employing Maximum Likelihood Detection for MIMO-OFDM Transmission in Relay Channels

    Takeshi ONIZAWA  Hiroki SHIBAYAMA  Masashi IWABUCHI  Akira KISHIDA  Makoto UMEUCHI  Tetsu SAKATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:5
      Page(s):
    1094-1102

    This paper describes a simple packet combining scheme with maximum likelihood detection (MLD) for multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) in relay channels to construct reliable wireless links in wireless local area networks (LANs). Our MLD-based approach employs the multiplexed sub-stream signals in different transmit slots. The proposed scheme uses an additional combining process before MLD processing. Moreover, the proposed scheme sets the cyclic shift delay (CSD) operation in the relay terminal. We evaluate the performance of the proposed scheme by the packet error rate (PER) and throughput performance in the decode-and-forward (DF) strategy. First, we show that the proposed scheme offers approximately 4.5dB improvement over the conventional scheme in the received power ratio of the relay terminal to the destination terminal at PER =0.1. Second, the proposed scheme achieves about 1.6 times the throughput of the conventional scheme when the received power ratio of the relay terminal to the destination terminal is 3dB.

  • Outdoor Experiments on Long-Range and Mobile Communications Using 39-GHz Band for 5G and Beyond

    Masashi IWABUCHI  Anass BENJEBBOUR  Yoshihisa KISHIYAMA  Guangmei REN  Chen TANG  Tingjian TIAN  Liang GU  Yang CUI  Terufumi TAKADA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1437-1446

    This paper presents results of outdoor experiments conducted in the 39-GHz band. In particular, assuming mobile communications such as the fifth generation mobile communications (5G) and beyond, we focus on achieving 1Gbit/s or greater throughput at transmission distances exceeding 1km in the experiments. In order to enhance the data rate and capacity, the use of higher frequency bands above 6GHz for mobile communications is a new and important technical challenge for 5G and beyond. To extend further the benefits of higher frequency bands to various scenarios, it is important to enable higher frequency bands to basically match the coverage levels of existing low frequency bands. Moreover, mobility is important in mobile communications. Therefore, we assume the 39-GHz band as a candidate frequency for 5G and beyond and prepare experimental equipment that utilizes lens antenna and beam tracking technologies. In the experiments, we achieve the throughput values of 2.14Gbit/s at the transmission distance of 1850m and 1.58Gbit/s at 20-km/h mobility. Furthermore, we show the possibility of achieving high throughput even under non-line-of-sight conditions. These experimental results contribute to clarifying the potential for the 39-GHz band to support gigabit-per-second class data rates while still providing coverage and supporting mobility over a coverage area with distance greater than 1km.

  • User-Oriented QoS Control Method Based on CSMA/CA for IEEE802.11 Wireless LAN System

    Akira KISHIDA  Masashi IWABUCHI  Toshiyuki SHINTAKU  Tetsu SAKATA  Takefumi HIRAGURI  Kentaro NISHIMORI  

     
    PAPER

      Vol:
    E96-B No:2
      Page(s):
    419-429

    The IEEE 802.11 distributed coordinated function (DCF) adopts carrier sense multiple access with collision avoidance (CSMA/CA) as its medium access control (MAC) protocol. CSMA/CA is designed such that the transmission from any one station does not have priority over any other. In a congested environment with many DCF stations, this design makes it difficult to protect channel resources for certain stations such as when products are used for presentation at exhibitions, which should be protected based on priority. On the other hand, The IEEE 802.11 enhanced distributed channel access (EDCA) provides a quality-of-service (QoS) mechanism for DCF. However in EDCA, transmission opportunities are allocated based on not individual stations but on the defined traffic type of applications. This paper proposes a distributed dynamic resource allocation method that enables control of flexible bandwidth allocation to each specific station. The proposed method controls the priority level and can coexist with conventional CSMA/CA. Moreover, the proposed method improves the system throughput. Specifically, under the coexistence environment with DCF stations, the proposed method is able to obtain up to over 300% higher user throughput characteristic compared to the case in which the proposed method is not introduced. In addition, under non-coexistence environment, all the proposed stations achieve 70% higher throughput than DCF stations when the number of stations in a network is 50.