The search functionality is under construction.

Author Search Result

[Author] Yo YAMAGUCHI(27hit)

1-20hit(27hit)

  • 26 GHz Band Extremely Low-Profile Front-End Configuration Employing Integrated Modules of Patch Antennas and SIW Filters

    Yasunori SUZUKI  Takana KAHO  Kei SATOH  Hiroshi OKAZAKI  Maki ARAI  Yo YAMAGUCHI  Shoichi NARAHASHI  Hiroyuki SHIBA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1097-1107

    This paper presents an extremely low-profile front-end configuration for a base station at quasi-millimeter wave band. It consists of integrated modules of patch antennas and substrate integrated waveguide filters using two printed circuit boards, and transmitter modules using compact GaAs pHEMT three-dimensional monolithic millimeter-wave integrated circuits. The transmitter modules are located around the integrated modules. This is because the proposed front-end configuration can attain extremely low profile, and band-pass filtering performance at quasi-millimeter wave band. As a demonstration of the proposed configuration, 26-GHz-band 4-by-4 elements front-end module is fabricated and tested. The fabricated module has the thickness of about 1 cm, while that offers the attenuation of more than 30 dB with 2 GHz offset from 26 GHz. The proposed configuration can provide base station that can be effective in offering sub-millimeter wave and millimeter-wave bands broadband services for 5G mobile communications systems.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

  • A Very Low Spurious X-Band Frequency Quadrupler with Very High Integration Using 3D-MMIC Technology

    Yo YAMAGUCHI  Takana KAHO  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E91-C No:11
      Page(s):
    1744-1750

    A highly integrated frequency quadrupler MMIC that uses three-dimensional MMIC (3D-MMIC) technology is presented. It consists of four driver amplifiers, two doublers, and a 2-band elimination filter. These seven circuits are integrated in only a 2.36 mm2 area. The filter sufficiently suppresses spurious output components. The third and fifth harmonic components, which are the spurious components nearest to the desired component, are well suppressed. The desired/undesired ratio is about 40 dB. The driver amplifiers make the quadrupler output a constant power of the desired multiplied signal under low input power. The MMIC supplies +5 dBm of the fourth harmonic component in the input power range from -10 dBm to +5 dBm. The power dissipation of the MMIC is only 160 mW.

  • A Novel Adaptive Linearization Technique for a Balanced-Amplifier Array

    Takana KAHO  Yo YAMAGUCHI  Tadao NAKAGAWA  Katsuhiko ARAKI  Kiyomichi ARAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:10
      Page(s):
    1448-1453

    We propose a novel adaptive linearization technique for a balanced-amplifier array. The technique uses the specific intermodulation distortions (IMDs) at the output ports in the array. The detected IMD power level can be used to optimize the linearizer's characteristics. Because the design does not need as many power detectors and carrier cancel loops as it does amplifiers, we were able to successfully miniaturize the array-antenna system. This paper describes the principles, verified both experimentally and mathematically for a 4-port amplifier array.

  • Signal Separation and Reconstruction Method for Simultaneously Received Multi-System Signals in Flexible Wireless System

    Takayuki YAMADA  Doohwan LEE  Hiroyuki SHIBA  Yo YAMAGUCHI  Kazunori AKABANE  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1085-1092

    We previously proposed a unified wireless system called “Flexible Wireless System”. Comprising of flexible access points and a flexible signal processing unit, it collectively receives a wideband spectrum that includes multiple signals from various wireless systems. In cases of simultaneous multiple signal reception, however, reception performance degrades due to the interference among multiple signals. To address this problem, we propose a new signal separation and reconstruction method for spectrally overlapped signals. The method analyzes spectral information obtained by the short-time Fourier transform to extract amplitude and phase values at each center frequency of overlapped signals at a flexible signal processing unit. Using these values enables signals from received radio wave data to be separated and reconstructed for simultaneous multi-system reception. In this paper, the BER performance of the proposed method is evaluated using computer simulations. Also, the performance of the interference suppression is evaluated by analyzing the probability density distribution of the amplitude of the overlapped interference on a symbol of the received signal. Simulation results confirmed the effectiveness of the proposed method.

  • A Very Low Spurious Si-Bipolar Frequency Multiplier

    Yo YAMAGUCHI  Akihiro YAMAGISHI  Akira MINAKAWA  

     
    PAPER-Active Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1092-1097

    A very low spurious frequency doubler for wireless communication systems is proposed. The key to this technique is to change the input signal into a rectangular wave, which effectively suppresses the fundamental frequency and the odd harmonic components. The desired to undesired signal ratio (D/U) is better than 50 dBc at the desired output frequency of 1.1 GHz. The proposed doubler eliminates the need for the band-pass filters which occupy a large part of the radio frequency (RF) module. High order multipliers easily are fabricated with this method. In this paper, a quadrupler is also described.

  • Concurrent Multi-Band Mixer with Independent and Linear Gain Control

    Takana KAHO  Yo YAMAGUCHI  Hiroyuki SHIBA  Tadao NAKAGAWA  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    659-668

    Novel multi-band mixers that can receive multiple band signals concurrently are proposed and evaluated. The mixers achieve independent gain control through novel relative power control method of the multiple local oscillator (LO) signals. Linear control is also achieved through multiple LO signal input with total LO power control. Theoretical analysis shows that odd-order nonlinearity components of the multiple LO signals support linear conversion gain control. Dual- and triple-band tests are conducted using typical three MOSFET mixers fabricated by a 0.25 µm SiGe BiCMOS process. Measurements confirm over 40 dB independent control of conversion gain, linear control achieved through LO input power control. The proposed mixers have high input linearity with a 5 dBm output third intercept point. A method is also proposed to reduce interference caused by mixing between multiple LO signals.

  • An Analysis of Multi-Layer Inductors for Miniaturizing of GaAs MMIC

    Yo YAMAGUCHI  Takana KAHO  Motoharu SASAKI  Kenjiro NISHIKAWA  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1119-1125

    Newly developed multi-layer inductors on GaAs three-dimensional MMICs are presented. We analyzed single-, double-, triple-, and quadruple-layer stacked-type inductors in what may be the first report on inductors on a GaAs MMIC with three or more layers. The performance of single- and multi-layer inductors was measured and calculated by electromagnetic field simulation. The multi-layer inductors produce 2-11 times higher inductance than that of conventional inductors on 2D-MMICs although they are the same size. This means that the proposed multi-layer inductors have smaller areas with the same inductances than those of conventional inductors. We also conducted the first-ever investigation of how performance factors such as parasitic capacitance, Q-factor, and self-resonant frequency are degraded in multi-layer inductors vis-a-vis those of conventional inductors. A microwave amplifier using multi-layer inductors was demonstrated and found to reduce circuit size by 20%.

  • Combined Nyquist and Compressed Sampling Method for Radio Wave Data Compression of a Heterogeneous Network System Open Access

    Doohwan LEE  Takayuki YAMADA  Hiroyuki SHIBA  Yo YAMAGUCHI  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3238-3247

    To satisfy the requirement of a unified platform which can flexibly deal with various wireless radio systems, we proposed and implemented a heterogeneous network system composed of distributed flexible access points and a protocol-free signal processing unit. Distributed flexible access points are remote RF devices which perform the reception of multiple types of radio wave data and transfer the received data to the protocol-free signal processing unit through wired access network. The protocol-free signal processing unit performs multiple types of signal analysis by software. To realize a highly flexible and efficient radio wave data reception and transfer, we employ the recently developed compressed sensing technology. Moreover, we propose a combined Nyquist and compressed sampling method for the decoding signals to be sampled at the Nyquist rate and for the sensing signals to be sampled at the compressed rate. For this purpose, the decoding signals and the sensing signals are converted into the intermediate band frequency (IF) and mixed. In the IF band, the decoding signals are set at lower center frequencies than those of the sensing signals. The down converted signals are sampled at the rate of four times of the whole bandwidth of the decoding signals plus two times of the whole bandwidth of the sensing signals. The purpose of above setting is to simultaneously conduct Nyquist rate and compressed rate sampling in a single ADC. Then, all of odd (or even) samples are preserved and some of even (or odd) samples are randomly discarded. This method reduces the data transfer burden in dealing with the sensing signals while guaranteeing the realization of Nyquist-rate decoding performance. Simulation and experiment results validate the efficiency of the proposed method.

  • 3-Dimensional Imaging and Motion Estimation Method of Multiple Moving Targets for Multi-Static UWB Radar Using Target Point and Its Normal Vector

    Ryo YAMAGUCHI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E97-B No:12
      Page(s):
    2819-2829

    Radar systems using ultra-wideband (UWB) signals have definitive advantages in high range resolution. These are suitable for accurate 3-dimensional (3-D) sensing by rescue robots operating in disaster zone settings, where optical sensing is not applicable because of thick smog or high-density gas. For such applications, where no a priori information of target shape and position is given, an accurate method for 3-D imaging and motion estimation is strongly required for effective target recognition. In addressing this issue, we have already proposed a non-parametric 2-dimensional (2-D) imaging method for a target with arbitrary target shape and motion including rotation and translation being tracked using a multi-static radar system. This is based on matching target boundary points obtained using the range points migration (RPM) method extended to the multi-static radar system. Whereas this method accomplishes accurate imaging and motion estimation for single targets, accuracy is degraded severely for multiple targets, due to interference effects. For a solution of this difficulty, this paper proposes a method based on a novel matching scheme using not only target points but also normal vectors on the target boundary estimated by the Envelope method; interference effects are effectively suppressed when incorporating the RPM approach. Results from numerical simulations for both 2-D and 3-D models show that the proposed method simultaneously achieves accurate target imaging and motion tracking, even for multiple moving targets.

  • Experimental Validation of Digital Pre-distortion Technique for Dual-band Dual-signal Amplification by Single Feedback Architecture Employing Dual-band Mixer

    Ikuma ANDO  Gia Khanh TRAN  Kiyomichi ARAKI  Takayuki YAMADA  Takana KAHO  Yo YAMAGUCHI  Tadao NAKAGAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E98-C No:3
      Page(s):
    242-251

    In this paper we describe and experimentally validate a dual-band digital predistortion (DPD) model we propose that takes account of the intermodulation and harmonic distortion produced when the center frequencies of input bands have a harmonic relationship. We also describe and experimentally validate our proposed novel dual-band power amplifier (PA) linearization architecture consisting of a single feedback loop employing a dual-band mixer. Experiment results show that the DPD linearization the proposed model provides can compensate for intermodulation and harmonic distortion in a way that the conventional two-dimensional (2-D) DPD approach cannot. The proposed feedback architecture should make it possible to simplify analog-to-digital converter (ADC) design and eliminate the time lag between different feedback paths.

  • Highly Reliable and Compact InP-Based In-Phase and Quadrature Modulators for Over 400 Gbit/s Coherent Transmission Systems

    Hajime TANAKA  Tsutomu ISHIKAWA  Takashi KITAMURA  Masataka WATANABE  Ryuji YAMABI  Ryo YAMAGUCHI  Naoya KONO  Takehiko KIKUCHI  Morihiro SEKI  Tomokazu KATSUYAMA  Mitsuru EKAWA  Hajime SHOJI  

     
    PAPER

      Pubricized:
    2020/07/10
      Vol:
    E103-C No:11
      Page(s):
    661-668

    We fabricated an InP-based dual-polarization In-phase and Quadrature (DP-IQ) modulator consisting of a Mach-Zehnder (MZ) modulator array integrated with RF termination resistors and backside via holes for high-bandwidth coherent driver modulators and revealed its high reliability. These integrations allowed the chip size (Chip size: 4.4mm×3mm) to be reduced by 59% compared with the previous chip without these integrations, that is, the previous chip needed 8 chip-resistors for terminating RF signals and 12 RF electrode pads for the electrical connection with these resistors in a Signal-Ground-Signal configuration. This MZ modulator exhibited a 3-dB bandwidth of around 40 GHz as its electrical/optical response, which is sufficient for over 400 Gbit/s coherent transmission systems using 16-ary quadrature amplitude modulation (QAM) and 64QAM signals. Also, we investigated a rapid degradation which affects the reliability of InP-based DP-IQ modulators. This rapid degradation we called optical damage is caused by strong incident light power and a high reverse bias voltage condition at the entrance of an electrode in each arm of the MZ modulators. This rapid degradation makes it difficult to estimate the lifetime of the chip using an accelerated aging test, because the value of the breakdown voltage which induces optical damage varies considerably depending on conditions, such as light power, operation wavelength, and chip temperature. Therefore, we opted for the step stress test method to investigate the lifetime of the chip. As a result, we confirmed that optical damage occurred when photo-current density at the entrance of an electrode exceeded threshold current density and demonstrated that InP-based modulators did not degrade unless operation conditions reached threshold current density. This threshold current density was independent of incident light power, operation wavelength and chip temperature.

  • Accurate Imaging Method for Moving Target with Arbitrary Shape for Multi-Static UWB Radar

    Ryo YAMAGUCHI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E96-B No:7
      Page(s):
    2014-2023

    Ultra-wideband pulse radar is a promising technology for the imaging sensors of rescue robots operating in disaster scenarios, where optical sensors are not applicable because of thick smog or high-density gas. For the above application, while one promising ultra-wideband radar imaging algorithm for a target with arbitrary motion has already been proposed with a compact observation model, it is based on an ellipsoidal approximation of the target boundary, and is difficult to apply to complex target shapes. To tackle the above problem, this paper proposes a non-parametric and robust imaging algorithm for a target with arbitrary motion including rotation and translation being observed by multi-static radar, which is based on the matching of target boundary points obtained by the range points migration (RPM) algorithm extended to the multi-static radar model. To enhance the imaging accuracy in situations having lower signal-to-noise ratios, the proposed method also adopts an integration scheme for the obtained range points, the antenna location part of which is correctly compensated for the estimated target motion. Results from numerical simulations show that the proposed method accurately extracts the surface of a moving target, and estimates the motion of the target, without any target or motion model.

  • A Low-Noise, High-Gain Quasi-Millimeter-Wave Receiver MMIC with a Very High Degree of Integration Using 3D-MMIC Technology

    Takana KAHO  Yo YAMAGUCHI  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER-Active Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1548-1556

    We present a highly integrated quasi-millimeter-wave receiver MMIC that integrates 22 circuits in a 3 2.3 mm area using three-dimensional MMIC (3D-MMIC) technology. The MMIC achieves low noise (3 dB) and high gain (41 dB) at 26 GHz by using an on-chip image reject filter. It integrates a multiply-by-eight (X8) local oscillator (LO) chain with the IF frequency of the 2.4 GHz band and can use low-cost voltage-controlled oscillators (VCOs) and demodulators in a 2–3 GHz frequency band. Multilayer inductors contribute to the miniaturization especially in a 2–12 GHz frequency band. Furthermore, it achieves a high dynamic range by using two step attenuators with a new built-in inverter using an N-channel depression field-effect transistor (FET). The power consumption of the MMIC is only 450 mW.

  • A Highly Linearized MMIC Amplifier Using a Combination of a Newly Developed LD-FET and D-FET Simultaneously Fabricated with a Self-Alignment/Selective Ion-Implantation Process

    Masashi NAKATSUGAWA  Masahiro MURAGUCHI  Yo YAMAGUCHI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    1981-1989

    We propose linearization techniques for MMIC amplifiers. The key points of these techniques are increased linearity of a newly-developed low-distortion MESFET (LD-FET) and maximized IP3 by combining the LD-FET with a high-gain depletion-mode MESFET (D-FET) with no increase in power consumption. The LD-FET is characterized by its unique channel dopant-profile prepared by a buried p-type ion-implantation and double n-type ion-implantations with high- and low-acceleration energies. This FET achieves flatter behavior in terms of mutual conductance (gm) compared with conventional MESFETs irrespective of changes in the gate bias voltage (Vgs). A self-alignment/selective ion-implantation process enables the LD-FET and D-FET to be fabricated simultaneously. This process encourages IP3 maximization of the multi-stage amplifier by appropriately combining the advantages of the two differently characterized MESFETs. We fabricated and tested a highly linearized two-stage MMIC amplifier utilizing the proposed techniques, and found that its third-order intermodulation ratio (IMR) performance was 8.7 dB better than that of conventional MMIC amplifiers at an input signal level of -20 dBm with no increase in current dissipation. The configuration constructed by using the proposed techniques equivalently reduces the current dissipation of the second stage to 1/2.72 times that of the conventional configuration, which requires a 2.72 times larger D-FET at the second stage to obtain an 8.7-dB IMR improvement. Furthermore, we were able to improve the IMR by 3.5 dB by optimizing the gate bias conditions for the LD-FET. These results confirm the validity of the proposed techniques.

  • Underground Infrastructure Management System using Internet of Things Wireless Transmission Technology Open Access

    Yo YAMAGUCHI  Yosuke FUJINO  Hajime KATSUDA  Marina NAKANO  Hiroyuki FUKUMOTO  Shigeru TERUHI  Kazunori AKABANE  Shuichi YOSHINO  

     
    INVITED PAPER

      Vol:
    E101-C No:10
      Page(s):
    727-733

    This paper presents a water leakage monitoring system that gathers acoustic data of water pipes using wireless communication technology and identifies the sound of water leakage using machine leaning technology. To collect acoustic data effectively, this system combines three types of data-collection methods: drive-by, walk-by, and static. To design this system, it is important to ascertain the wireless communication distance that can be achieved with sensors installed in a basement. This paper also reports on radio propagation from underground manholes made from reinforced concrete and resin concrete in residential and commercial areas using the 920 MHz band. We reveal that it is possible to design a practical system that uses radio communication from underground sensors.

  • A Fractional Phase Interpolator Using Two-Step Integration for Frequency Multiplication and Direct Digital Synthesis

    Hideyuki NOSAKA  Yo YAMAGUCHI  Akihiro YAMAGISHI  Masahiro MURAGUCHI  

     
    PAPER

      Vol:
    E86-A No:2
      Page(s):
    304-312

    We propose a new phase interpolator that provides precise fractional phase pulses without the need to adjust circuit constants. The variable phases are produced by detecting the coincidence of two voltages, the ramp wave and the threshold voltage. The new phase interpolator can keep the same ramp wave slope and the same threshold voltage for different output phases. This significantly reduces the power dissipation of the voltage comparator. This phase interpolator can be applied to various timing circuits and clock generators, such as frequency multipliers and direct digital synthesizers. We present a novel frequency doubler, a novel frequency tripler, a direct digital synthesizer (DDS), and a novel wideband DDS (WDDS) as applications of our new phase interpolator, which uses 0.35-mm CMOS process technology. Experimental results confirm the functionarity of the new phase interpolator. An 8-bit complete DDS IC dissipates only 2.1 mA at a 50-MHz clock rate and a supply voltage of 2.8 V.

  • Recent Technologies in Japan on Array Antennas for Wireless Systems Open Access

    Jiro HIROKAWA  Qiang CHEN  Mitoshi FUJIMOTO  Ryo YAMAGUCHI  

     
    INVITED SURVEY PAPER-Antennas and Propagation

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1644-1652

    Array antenna technology for wireless systems is highly integrated for demands such as multi-functionality and high-performance. This paper details recent technologies in Japan in design techniques based on computational electromagnetics, antenna hardware techniques in the millimeter-wave band, array signal processing to add adaptive functions, and measurement methods to support design techniques, for array antennas for future wireless systems. Prospects of these four technologies are also described.

  • Double-Directional Time-Spatial Measurement Method Using Synthetic Aperture Antenna

    Kazuma TOMIMOTO  Ryo YAMAGUCHI  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    250-259

    The 5th-generation mobile communication uses multi-element array antennas in not only base stations but also mobile terminals. In order to design multi-element array antennas efficiently, it is important to acquire the characteristics of the direction of arrival (DOA) and direction of departure (DOD), and a highly accurate and simple measurement method is required. This paper proposes a highly accurate and simple method to measure DOA and DOD by applying synthetic aperture (SA) processed at both Rx and Tx sides. It is also shown that the addition of beam scanning to the proposed method can reduce the measurement time while maintaining the peak detection resolution. Moreover, experiments in an anechoic chamber and a shielded room using actual wave sources confirm that DOA and DOD can be detected with high accuracy.

  • Far-Field Analysis in the Multiple-Region (MR)/FDTD Method for THz Frequency Band

    Kei ASAHI  Takuji ARIMA  Ryo YAMAGUCHI  Kazuma TOMIMOTO  Toshiki HOZEN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/06/07
      Vol:
    E106-B No:11
      Page(s):
    1165-1172

    Far-field directivity analysis method where the FDTD method is used to calculate the near-field and then calculating far-field from the near-field has been used practically in wide variety of fields. MR/FDTD method is a simulation method derived from the FDTD method and can provide several advantages to the FDTD method. When combined with the far-field analysis, it theoretically can provide several advantages against the conventional method. In this paper, far-field analysis method that uses MR/FDTD method is introduced and its effectiveness is verified against the conventional method through numerical simulations.

1-20hit(27hit)