The search functionality is under construction.

Author Search Result

[Author] Shouhei KIDERA(37hit)

1-20hit(37hit)

  • A Robust and Fast Imaging Algorithm with an Envelope of Circles for UWB Pulse Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E90-B No:7
      Page(s):
    1801-1809

    Target shape estimation with UWB pulse radars is a promising imaging technique for household robots. We have already proposed a fast imaging algorithm, SEABED, that is based on a reversible transform BST (Boundary Scattering Transform) between the received signals and the target shape. However, the target image obtained by SEABED deteriorates in a noisy environment because it utilizes a derivative of received data. In this paper, we propose a robust imaging method with an envelope of circles. We clarify by numerical simulation that the proposed method can realize a level of robust and fast imaging that cannot be achieved by the original SEABED.

  • Accurate 3-Dimensional Imaging Method Based on Extended RPM for Rotating Target Model

    Shouhei KIDERA  Hiroyuki YAMADA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:10
      Page(s):
    3279-3289

    Three-dimensional (3-D) reconstruction techniques employed by airborne radars are essential for object recognition in scenarios where optically vision is blurry, and are required for the monitoring of disasters and coast-guard patrols. There have been reports on 3-D reconstruction methods that exploit the layover appearing in inverse synthetic aperture radar (ISAR) imagery, which are suitable for the recognition of artificial targets such as buildings, aircraft or ships. However, existing methods assume only a point target or the aggregate of point targets, and most require the tracking of the multiple points over sequential ISAR images. In the case of a solid object with a continuous boundary, such as a wire or polyhedral structure, the positioning accuracy of such methods is severely degraded owing to scattering centers continuously shifting on the target surface with changes in the rotation angle. To overcome this difficulty, this paper extends the original Range Points Migration (RPM) method to the ISAR observation model, where a double mono-static model with two transmitting and receiving antennas is introduced to suppress cross-range ambiguity. The results of numerical simulation and experimental validation demonstrate that the extended RPM method has a distinct advantage for accurate 3-D imaging, even for non-point targets.

  • MLICA-Based Separation Algorithm for Complex Sinusoidal Signals with PDF Parameter Optimization

    Tetsuhiro OKANO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:11
      Page(s):
    3556-3562

    Blind source separation (BSS) techniques are required for various signal decomposing issues. Independent component analysis (ICA), assuming only a statistical independence among stochastic source signals, is one of the most useful BSS tools because it does not need a priori information on each source. However, there are many requirements for decomposing multiple deterministic signals such as complex sinusoidal signals with different frequencies. These requirements may include pulse compression or clutter rejection. It has been theoretically shown that an ICA algorithm based on maximizing non-Gaussianity successfully decomposes such deterministic signals. However, this ICA algorithm does not maintain a sufficient separation performance when the frequency difference of the sinusoidal waves becomes less than a nominal frequency resolution. To solve this problem, this paper proposes a super-resolution algorithm for complex sinusoidal signals by extending the maximum likelihood ICA, where the probability density function (PDF) of a complex sinusoidal signal is exploited as a priori knowledge, in which the PDF of the signal amplitude is approximated as a Gaussian distribution with an extremely small standard deviation. Furthermore, we introduce an optimization process for this standard deviation to avoid divergence in updating the reconstruction matrix. Numerical simulations verify that our proposed algorithm remarkably enhances the separation performance compared to the conventional one, and accomplishes a super-resolution separation even in noisy situations.

  • Parametric Wind Velocity Vector Estimation Method for Single Doppler LIDAR Model

    Takayuki MASUO  Fang SHANG  Shouhei KIDERA  Tetsuo KIRIMOTO  Hiroshi SAKAMAKI  Nobuhiro SUZUKI  

     
    PAPER-Sensing

      Pubricized:
    2016/10/12
      Vol:
    E100-B No:3
      Page(s):
    465-472

    Doppler lidar (LIght Detection And Ranging) can provide accurate wind velocity vector estimates by processing the time delay and Doppler spectrum of received signals. This system is essential for real-time wind monitoring to assist aircraft taking off and landing. Considering the difficulty of calibration and cost, a single Doppler lidar model is more attractive and practical than a multiple lidar model. In general, it is impossible to estimate two or three dimensional wind vectors from a single lidar model without any prior information, because lidar directly observes only a 1-dimensional (radial direction) velocity component of wind. Although the conventional VAD (Velocity Azimuth Display) and VVP (Velocity Volume Processing) methods have been developed for single lidar model, both of them are inaccurate in the presence of local air turbulence. This paper proposes an accurate wind velocity estimation method based on a parametric approach using typical turbulence models such as tornado, micro-burst and gust front. The results from numerical simulation demonstrate that the proposed method remarkably enhances the accuracy for wind velocity estimation in the assumed modeled turbulence cases, compared with that obtained by the VAD or other conventional method.

  • 3-Dimensional Imaging and Motion Estimation Method of Multiple Moving Targets for Multi-Static UWB Radar Using Target Point and Its Normal Vector

    Ryo YAMAGUCHI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E97-B No:12
      Page(s):
    2819-2829

    Radar systems using ultra-wideband (UWB) signals have definitive advantages in high range resolution. These are suitable for accurate 3-dimensional (3-D) sensing by rescue robots operating in disaster zone settings, where optical sensing is not applicable because of thick smog or high-density gas. For such applications, where no a priori information of target shape and position is given, an accurate method for 3-D imaging and motion estimation is strongly required for effective target recognition. In addressing this issue, we have already proposed a non-parametric 2-dimensional (2-D) imaging method for a target with arbitrary target shape and motion including rotation and translation being tracked using a multi-static radar system. This is based on matching target boundary points obtained using the range points migration (RPM) method extended to the multi-static radar system. Whereas this method accomplishes accurate imaging and motion estimation for single targets, accuracy is degraded severely for multiple targets, due to interference effects. For a solution of this difficulty, this paper proposes a method based on a novel matching scheme using not only target points but also normal vectors on the target boundary estimated by the Envelope method; interference effects are effectively suppressed when incorporating the RPM approach. Results from numerical simulations for both 2-D and 3-D models show that the proposed method simultaneously achieves accurate target imaging and motion tracking, even for multiple moving targets.

  • Accurate Coherent Change Detection Method Based on Pauli Decomposition for Fully Polarimetric SAR Imagery

    Ryo OYAMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E98-B No:7
      Page(s):
    1390-1395

    Microwave imaging techniques, particularly for synthetic aperture radar (SAR), produce high-resolution terrain surface images regardless of the weather conditions. Focusing on a feature of complex SAR images, coherent change detection (CCD) approaches have been developed in recent decades that can detect invisible changes in the same regions by applying phase interferometry to pairs of complex SAR images. On the other hand, various techniques of polarimetric SAR (PolSAR) image analysis have been developed, since fully polarimetric data often include valuable information that cannot be obtained from single polarimetric observations. According to this background, various coherent change detection methods based on fully polarimetric data have been proposed. However, the detection accuracies of these methods often degrade in low signal-to-noise ratio (SNR) situations due to the lower signal levels of cross-polarized components compared with those of co-polarized ones. To overcome the problem mentioned above, this paper proposes a novel CCD method by introducing the Pauli decomposition and the weighting of component with their respective SNR. The experimental data obtained in anechoic chamber show that the proposed method significantly enhances the performance of the receiver operation characteristic (ROC) compared with that obtained by a conventional approach.

  • Dielectric Constant and Boundary Extraction Method for Double-Layered Dielectric Object for UWB Radars

    Takuya NIIMI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E98-C No:12
      Page(s):
    1134-1142

    Microwave ultra-wideband (UWB) radar systems are advantageous for their high-range resolution and ability to penetrate dielectric objects. Internal imaging of dielectric objects by UWB radar is a promising nondestructive method of testing aging roads and bridges and a noninvasive technique for human body examination. For these applications, we have already developed an accurate internal imaging approach based on the range points migration (RPM) method, combined with a method that efficiently estimates the dielectric constant. Although this approach accurately extracts the internal boundary, it is applicable only to highly conductive targets immersed in homogeneous dielectric media. It is not suitable for multi-layered dielectric structures such as human tissues or concrete objects. To remedy this limitation, we here propose a novel dielectric constant and boundary extraction method for double-layered materials. This new approach, which simply extends the Envelope method to boundary extraction of the inner layer, is evaluated in finite difference time domain (FDTD)-based simulations and laboratory experiments, assuming a double-layered concrete cylinder. These tests demonstrate that our proposed method accurately and simultaneously estimates the dielectric constants of both media and the layer boundaries.

  • Accurate and Nonparametric Imaging Algorithm for Targets Buried in Dielectric Medium for UWB Radars

    Ken AKUNE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:8
      Page(s):
    1389-1398

    Ultra-wide band (UWB) pulse radar with high range resolution and dielectric permeability is promising as an internal imaging technique for non-destructive testing or breast cancer detection. Various imaging algorithms for buried objects within a dielectric medium have been proposed, such as aperture synthesis, the time reversal approach and the space-time beamforming algorithm. However, these algorithms mostly require a priori knowledge of the dielectric medium boundary in image focusing, and often suffer from inadequate accuracy to identify the detailed structure of buried targets, such as an edge or specular surface owing to employing the waveform focusing scheme. To overcome these difficulties, this paper proposes an accurate and non-parametric (i.e. using an arbitrary shape without target modeling) imaging algorithm for targets buried in a homogeneous dielectric medium by advancing the RPM (Range Points Migration) algorithm to internal imaging issues, which has been demonstrated to provide an accurate image even for complex-shaped objects in free-space measurement. Numerical simulations, including those for two-dimensional (2-D) and three-dimensional (3-D) cases, verify that the proposed algorithm enhances the imaging accuracy by less than 1/10 of the wavelength and significantly reduces the computational cost by specifying boundary extraction compared with the conventional SAR-based algorithm.

  • Super Resolution TOA Estimation Algorithm with Maximum Likelihood ICA Based Pre-Processing

    Tetsuhiro OKANO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E96-B No:5
      Page(s):
    1194-1201

    High-resolution time of arrival (TOA) estimation techniques have great promise for the high range resolution required in recently developed radar systems. A widely known super-resolution TOA estimation algorithm for such applications, the multiple-signal classification (MUSIC) in the frequency domain, has been proposed, which exploits an orthogonal relationship between signal and noise eigenvectors obtained by the correlation matrix of the observed transfer function. However, this method suffers severely from a degraded resolution when a number of highly correlated interference signals are mixed in the same range gate. As a solution for this problem, this paper proposes a novel TOA estimation algorithm by introducing a maximum likelihood independent component analysis (MLICA) approach, in which multiple complex sinusoidal signals are efficiently separated by the likelihood criteria determined by the probability density function (PDF) of a complex sinusoid. This MLICA schemes can decompose highly correlated interference signals, and the proposed method then incorporates the MLICA into the MUSIC method, to enhance the range resolution in richly interfered situations. The results from numerical simulations and experimental investigation demonstrate that our proposed pre-processing method can enhance TOA estimation resolution compared with that obtained by the original MUSIC, particularly for lower signal-to-noise ratios.

  • Accurate Imaging Method for Moving Target with Arbitrary Shape for Multi-Static UWB Radar

    Ryo YAMAGUCHI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E96-B No:7
      Page(s):
    2014-2023

    Ultra-wideband pulse radar is a promising technology for the imaging sensors of rescue robots operating in disaster scenarios, where optical sensors are not applicable because of thick smog or high-density gas. For the above application, while one promising ultra-wideband radar imaging algorithm for a target with arbitrary motion has already been proposed with a compact observation model, it is based on an ellipsoidal approximation of the target boundary, and is difficult to apply to complex target shapes. To tackle the above problem, this paper proposes a non-parametric and robust imaging algorithm for a target with arbitrary motion including rotation and translation being observed by multi-static radar, which is based on the matching of target boundary points obtained by the range points migration (RPM) algorithm extended to the multi-static radar model. To enhance the imaging accuracy in situations having lower signal-to-noise ratios, the proposed method also adopts an integration scheme for the obtained range points, the antenna location part of which is correctly compensated for the estimated target motion. Results from numerical simulations show that the proposed method accurately extracts the surface of a moving target, and estimates the motion of the target, without any target or motion model.

  • Accurate Doppler Velocity Estimation by Iterative WKD Algorithm for Pulse-Doppler Radar

    Takumi HAYASHI  Takeru ANDO  Shouhei KIDERA  

     
    PAPER-Sensing

      Pubricized:
    2022/06/29
      Vol:
    E105-B No:12
      Page(s):
    1600-1613

    In this study, we propose an accurate range-Doppler analysis algorithm for moving multiple objects in a short range using microwave (including millimeter wave) radars. As a promising Doppler analysis for the above model, we previously proposed a weighted kernel density (WKD) estimator algorithm, which overcomes several disadvantages in coherent integration based methods, such as a trade-off between temporal and frequency resolutions. However, in handling multiple objects like human body, it is difficult to maintain the accuracy of the Doppler velocity estimation, because there are multiple responses from multiple parts of object, like human body, incurring inaccuracies in range or Doppler velocity estimation. To address this issue, we propose an iterative algorithm by exploiting an output of the WKD algorithm. Three-dimensional numerical analysis, assuming a human body model in motion, and experimental tests demonstrate that the proposed algorithm provides more accurate, high-resolution range-Doppler velocity profiles than the original WKD algorithm, without increasing computational complexity. Particularly, the simulation results show that the cumulative probabilities of range errors within 10mm, and Doppler velocity error within 0.1m/s are enhanced from 34% (by the former method) to 63% (by the proposed method).

  • Supervised SOM Based ATR Method with Circular Polarization Basis of Full Polarimetric Data

    Shouhei OHNO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E98-B No:12
      Page(s):
    2520-2527

    Satellite-borne or aircraft-borne synthetic aperture radar (SAR) is useful for high resolution imaging analysis for terrain surface monitoring or surveillance, particularly in optically harsh environments. For surveillance application, there are various approaches for automatic target recognition (ATR) of SAR images aiming at monitoring unidentified ships or aircraft. In addition, various types of analyses for full polarimetric data have been developed recently because it can provide significant information to identify structure of targets, such as vegetation, urban, sea surface areas. ATR generally consists of two processes, one is target feature extraction including target area determination, and the other is classification. In this paper, we propose novel methods for these two processes that suit full polarimetric exploitation. As the target area extraction method, we introduce a peak signal-to noise ratio (PSNR) based synthesis with full polarimetric SAR images. As the classification method, the circular polarization basis conversion is adopted to improve the robustness especially to variation of target rotation angles. Experiments on a 1/100 scale model of X-band SAR, demonstrate that our proposed method significantly improves the accuracy of target area extraction and classification, even in noisy or target rotating situations.

  • Surface Clutter Suppression with FDTD Recovery Signal for Microwave UWB Mammography Open Access

    Kazuki NORITAKE  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/07/17
      Vol:
    E103-C No:1
      Page(s):
    26-29

    Microwave mammography is a promising alternative to X-ray based imaging modalities, because of its small size, low cost, and cell-friendly exposure. More importantly, this modality enables the suppression of surface reflection clutter, which can be enhanced by introducing accurate surface shape estimations. However, near-field measurements can reduce the shape estimation accuracy, due to a mismatch between the reference and observed waveforms. To mitigate this problem, this study incorporates envelope-based shape estimation and finite-difference time-domain (FDTD)-based waveform correction with a fractional derivative adjustment. Numerical simulations based on realistic breast phantoms derived from magnetic resonance imaging (MRI) show that the proposed method significantly enhances the accuracy of breast surface imaging and the performance of surface clutter rejection.

  • Acceleration for Shadow Region Imaging Algorithm with Multiple Scattered Waves for UWB Radars

    Ken AKUNE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    LETTER-Sensing

      Vol:
    E94-B No:9
      Page(s):
    2696-2699

    Ultra-wide band (UWB) pulse radar has high range resolution, and is thus applicable to imaging sensors for a household robot. To enhance the imaging region of UWB radar, especially for multiple objects with complex shapes, an imaging algorithm based on aperture synthesis for multiple scattered waves has been proposed. However, this algorithm has difficulty realizing in real-time processing because its computation time is long. To overcome this difficulty, this letter proposes a fast accurate algorithm for shadow region imaging by incorporating the Range Points Migration (RPM) algorithm. The results of the numerical simulation show that, while the proposed algorithm affects the performance of the shadow region imaging slightly, it does not cause significant accuracy degradation and significantly decreases the computation time by a factor of 100 compared to the conventional algorithm.

  • Accurate Permittivity Estimation Method with Iterative Waveform Correction for UWB Internal Imaging Radar

    Ryunosuke SOUMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E96-C No:5
      Page(s):
    730-737

    Ultra-wideband (UWB) pulse radar has high range resolution and permeability in a dielectric medium, and has great potential for the non-destructive inspection or early-stage detection of breast cancer. As an accurate and high-resolution imaging method for targets embedded in a dielectric medium, extended range points migration (RPM) has been developed. Although this method offers an accurate internal target image in a homogeneous media, it assumes the permittivity of the dielectric medium is given, which is not practical for general applications. Although there are various permittivity estimation methods, they have essential problems that are not suitable for clear, dielectric boundaries like walls, or is not applicable to an unknown and arbitrary shape of dielectric medium. To overcome the above drawbacks, we newly propose a permittivity estimation method suitable for various shapes of dielectric media with a clear boundary, where the dielectric boundary points and their normal vectors are accurately determined by the original RPM method. In addition, our method iteratively compensates for the scattered waveform deformation using a finite-difference time domain (FDTD) method to enhance the accuracy of the permittivity estimation. Results from a numerical simulation demonstrate that our method achieves accurate permittivity estimation even for a dielectric medium of wavelength size.

  • Experimental Study on Embedded Object Imaging Method with Range Point Suppression of Creeping Wave for UWB Radars

    Toshiki MANAKA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E99-C No:1
      Page(s):
    138-142

    Ultra-wideband radar exhibits high range resolution, and excellent capability for penetrating dielectric media, especially when using lower frequency microwaves. Thus, it has a great potential for innovative non-destructive testing of aging roads or bridges or for non-invasive medical imaging applications. In this context, we have already proposed an accurate dielectric constant estimation method for a homogeneous dielectric medium, based on a geometrical optics (GO) approximation, where the dielectric boundary points and their normal vectors are directly reproduced using the range point migration (RPM) method. In addition, to compensate for the estimation error incurred by the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated. This paper shows the experimental validation of this method, where a new approach for suppressing the creeping wave along the dielectric boundary is also introduced. The results from real observation data validate the effectiveness of the proposed method in terms of highly accurate dielectric constant estimation and embedded object boundary reconstruction.

  • Accurate Surface Change Detection Method Using Phase of Coherence Function on SAR Imagery

    Takehiro HOSHINO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:1
      Page(s):
    263-270

    Satellite-borne SAR (synthetic aperture radar) is for high-resolution geosurface measurements. Recently, a feature extraction method based on CCD (coherent change detection) was developed, where a slight surface change on the geosurface is detected using the phase relationship between sequential complex SAR images of the same region made at different times. For accurate detection of the surface change, the log-likelihood method has been proposed. This method determines an appropriate threshold for change detection, making use of the phase characteristic of the changed area, and thus enhances the detection probability. However, this and other conventional methods do not seek to proactively employ phase information of the estimated coherence function, and their detection probability is often low, especially in the case that the target has small surface or local uniform changes. To overcome this problem, this paper proposes a novel transformation index that considers the phase difference of the coherence function. Furthermore, we introduce a pre-processing calibration method to compensate the bias error for the coherence phase which resulting mainly from the orbit error of the antenna platform. Finally, the results from numerical simulations and experiment modeling of the geosurface measurement verify the effectiveness of the proposed method, even in situations with low SNR (signal to noise ratio).

  • Accurate Permittivity Estimation Method for 3-Dimensional Dielectric Object with FDTD-Based Waveform Correction

    Ryunosuke SOUMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E97-C No:2
      Page(s):
    123-127

    Ultra-wideband pulse radar exhibits high range resolution, and excellent capability in penetrating dielectric media. With that, it has great potential as an innovative non-destructive inspection technique for objects such as human body or concrete walls. For suitability in such applications, we have already proposed an accurate permittivity estimation method for a 2-dimensional dielectric object of arbitrarily shape and clear boundary. In this method, the propagation path estimation inside the dielectric object is calculated, based on the geometrical optics (GO) approximation, where the dielectric boundary points and its normal vectors are directly reproduced by the range point migration (RPM) method. In addition, to compensate for the estimation error incurred using the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated, where an initial guess of the relative permittivity and dielectric boundary are employed for data regeneration. This study introduces the 3-dimensional extension of the above permittivity estimation method, aimed at practical uses, where only the transmissive data are effectively extracted, based on quantitative criteria that considers the spatial relationship between antenna locations and the dielectric object position. Results from a numerical simulation verify that our proposed method accomplishes accurate permittivity estimations even for 3-dimensional dielectric medium of wavelength size.

  • Accurate Height Change Estimation Method Using Phase Interferometry of Multiple Band-Divided SAR Images

    Ryo NAKAMATA  Ryo OYAMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E97-B No:6
      Page(s):
    1205-1214

    Synthetic aperture radar (SAR) is an indispensable tool for low visibility ground surface measurement owing to its robustness against optically harsh environments such as adverse weather or darkness. As a leading-edge approach for SAR image processing, the coherent change detection (CCD) technique has been recently established; it detects a temporal change in the same region according to the phase interferometry of two complex SAR images. However, in the case of general damage assessment following an earthquake or mudslide, the technique requires not only the detection of surface change but also an assessment for height change quantity, such as occurs with a building collapse or road subsidence. While the interferometric SAR (InSAR) approach is suitable for height assessment, it is basically unable to detect change if only a single observation is made. To address this issue, we previously proposed a method of estimating height change according to phase interferometry of the coherence function obtained by dual band-divided SAR images. However, the accuracy of this method significantly degrades in noisy situations owing to the use of the phase difference. To resolve this problem, this paper proposes a novel height estimation method by exploiting the frequency characteristic of coherence phases obtained by each SAR image multiply band-divided. The results obtained from numerical simulations and experimental data demonstrate that our proposed method offers accurate height change estimation while avoiding degradation in the spatial resolution.

  • Contrast Source Inversion for Objects Buried into Multi-Layered Media for Subsurface Imaging Applications

    Yoshihiro YAMAUCHI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2023/01/20
      Vol:
    E106-C No:7
      Page(s):
    427-431

    This study proposes a low-complexity permittivity estimation for ground penetrating radar applications based on a contrast source inversion (CSI) approach, assuming multilayered ground media. The homogeneity assumption for each background layer is used to address the ill-posed condition while maintaining accuracy for permittivity reconstruction, significantly reducing the number of unknowns. Using an appropriate initial guess for each layer, the post-CSI approach also provides the dielectric profile of a buried object. The finite difference time domain numerical tests show that the proposed approach significantly enhances reconstruction accuracy for buried objects compared with the traditional CSI approach.

1-20hit(37hit)