The search functionality is under construction.

Author Search Result

[Author] Toru SATO(33hit)

1-20hit(33hit)

  • Automatic Data Processing Procedure for Ground Probing Radar

    Toru SATO  Kenya TAKADA  Toshio WAKAYAMA  Iwane KIMURA  Tomoyuki ABE  Tetsuya SHINBO  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:6
      Page(s):
    831-837

    We developed an automatic data processing algorithm for a ground-probing radar which is essential in analyzing a large amount of data by a non-expert. Its aim is to obtain an optimum result that the conventional technique can give, without the assistance of an experienced operator. The algorithm is general except that it postulates the existence of at least one isolated target in the radar image. The raw images of underground objects are compressed in the vertical and the horizontal directions by using a pulse-compression filter and the aperture synthesis technique, respectively. The test function needed to configure the compression filter is automatically selected from the given image. The sensitivity of the compression filter is adjusted to minimize the magnitude of spurious responses. The propagation velocity needed to perform the aperture synthesis is determined by fitting a hyperbola to the selected echo trace. We verified the algorithm by applying it to the data obtained at two test sites with different magnitude of clutter echoes.

  • New Go-Back-N ARQ Protocols for Point-to-Multipoint Communications

    Hui ZHAO  Toru SATO  Iwane KIMURA  

     
    PAPER-Communication Theory

      Vol:
    E77-B No:8
      Page(s):
    1013-1022

    This paper presents new go-back-N ARQ protocols for point-to-multipoint communications over broadcast channels such as satellite or broadcast radio channels. In the conventional go-back-N ARQ protocols for multidestination communications, usually only error detection codes are used for error detection and m copies of a frame are transmitted at a time. In one of our protocols, a bit-by-bit majority-voting decoder based on all of the m copies of a frame is used to recover the transmitted frame. In another protocol, a hybrid-ARQ protocol, which is an error detection code concatenated with a rate repetition convolutional code with the Viterbi decoding, is used. In these protocols, a dynamic programming technique is used to select the optimal number of copies of a frame to be transmitted at a time. The optimal number is determined by round trip propagation delay of the channel, the error probability, and the number of receivers that have not yet received the message. Analytic expressions are derived for the throughput efficiency of the proposed protocols. The proposed point-to-multipoint protocols provide satisfactory throughput efficiency and perform considerably better than the conventional protocols under high error rate conditions, especially in environments with a large number of receivers and large link round trips. In this paper we analyze the performances of the proposed protocols upon the random error channel conditions.

  • Validation and Ground Truth for TRMM Precipitation Radar Using the MU Radar

    Toru SATO  Toshihiro TERAOKA  Iwane KIMURA  

     
    PAPER

      Vol:
    E79-B No:6
      Page(s):
    744-750

    The MU radar of Japan is one of important candidates for providing accurate ground truth for the TRMM precipitation radar. It can provide the dropsize distribution data together with the background atmospheric wind data with high accuracy and high spatial resolution. Special observation scheme developed for TRMM validation using the MU radar is described, and preliminary results from its test experiment are shown. The high-resolution MU radar data are also used in numerical simulations to validate the rain retrieval algorithm for the TRMM PR data analysis. Among known sources of errors in the rain retrieval, the vertical variability of the dropsize distribution and the partial beam-filling effect are examined in terms of their significance with numerical simulations based on the MU radar data. It is shown that these factors may seriously affect the accuracy of the TRMM rain retrieval, and that it is necessary to establish statistical means for compensation. However, suggested means to improve the conventional α-adjustment method require careful treatment so that they do not introduce new sources of errors.

  • Noncontact Monitoring of Heartbeat and Movements during Sleep Using a Pair of Millimeter-Wave Ultra-Wideband Radar Systems Open Access

    Takuya SAKAMOTO  Sohei MITANI  Toru SATO  

     
    PAPER-Sensing

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    463-471

    We experimentally evaluate the performance of a noncontact system that measures the heartbeat of a sleeping person. The proposed system comprises a pair of radar systems installed at two different positions. We use millimeter-wave ultra-wideband multiple-input multiple-output array radar systems and evaluate the performance attained in measuring the heart inter-beat interval and body movement. The importance of using two radar systems instead of one is demonstrated in this paper. We conduct three types of experiments; the first and second experiments are radar measurements of three participants lying on a bed with and without body movement, while the third experiment is the radar measurement of a participant actually sleeping overnight. The experiments demonstrate that the performance of the radar-based vital measurement strongly depends on the orientation of the person under test. They also show that the proposed system detects 70% of rolling-over movements made overnight.

  • Effective Echo Detection and Accurate Orbit Estimation Algorithms for Space Debris Radar

    Kentaro ISODA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E91-B No:3
      Page(s):
    887-895

    Orbit estimation of space debris, objects of no inherent value orbiting the earth, is a task that is important for avoiding collisions with spacecraft. The Kamisaibara Spaceguard Center radar system was built in 2004 as the first radar facility in Japan devoted to the observation of space debris. In order to detect the smaller debris, coherent integration is effective in improving SNR (Signal-to-Noise Ratio). However, it is difficult to apply coherent integration to real data because the motions of the targets are unknown. An effective algorithm is proposed for echo detection and orbit estimation of the faint echoes from space debris. The characteristics of the evaluation function are utilized by the algorithm. Experiments show the proposed algorithm improves SNR by 8.32 dB and enables estimation of orbital parameters accurately to allow for re-tracking with a single radar.

  • An Estimation Algorithm of Target Location and Scattered Waveforms for UWB Pulse Radar Systems

    Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E87-B No:6
      Page(s):
    1631-1638

    Radars utilizing ultra-wide-band (UWB) pulses are attractive as an environment measurement method for various applications including household robots. Suitable filtering is essential for accurate ranging, which requires an accurate waveform estimation. This paper presents a high-resolution algorithm of estimating target location and scattered waveforms, whose accuracies are interdependent. The technique relies on iterative improvements of estimated waveforms. Description of the algorithm is followed by statistical simulation examples. The performance of the algorithm is contrasted with conventional ones and statistical bounds. Results indicate that our proposed algorithm has a remarkable performance, which is close to the theoretical limit. Next, we clarify the problem of applying HCT to multiple targets. HCT for multiple targets can not be used as an estimated waveform because of interference waves from other targets. We propose an interference suppression algorithm based on a neural network, and show an application example of the algorithm.

  • An Accurate Imaging Algorithm with Scattered Waveform Estimation for UWB Pulse Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Satoshi SUGINO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E89-B No:9
      Page(s):
    2588-2595

    UWB pulse radars that offer target shape estimation are promising as imaging techniques for household or rescue robots. We have already proposed an efficient algorithm for a shape estimation method SEABED which is a fast algorithm based on a reversible transform. SEABED extracts quasi wavefronts from received signals with the filter that matches the transmitted waveform. However, the scattered waveform is, in general, different from the transmitted one depending on the shape of targets. This difference causes estimation errors in SEABED. In this paper, we propose an accurate algorithm for a polygonal-target based on scattered waveform estimation. The proposed method is presented first, followed by results of numerical simulations and experiments that show the efficiency of the proposed method.

  • Robust and Accurate Ultrasound 3-D Imaging Algorithm Incorporating Adaptive Smoothing Techniques

    Kenshi SAHO  Tomoki KIMURA  Shouhei KIDERA  Hirofumi TAKI  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E95-B No:2
      Page(s):
    572-580

    Many researchers have proposed ultrasound imaging techniques for product inspection; however, most of these techniques are aimed at detecting the existence of flaws in products. The acquisition of an accurate three-dimensional image using ultrasound has the potential to be a useful product inspection tool. In this paper we apply the Envelope algorithm, which was originally proposed for accurate UWB (Ultra Wide-Band) radar imaging systems, to ultrasound imaging. We show that the Envelope algorithm results in image deterioration, because it is difficult for ultrasound measurements to achieve high signal to noise (S/N) ratio values as a result of a high level of noise and interference from the environment. To reduce errors, we propose two adaptive smoothing techniques that effectively stabilize the estimated image produced by the Envelope algorithm. An experimental study verifies that the proposed imaging algorithm has accurate 3-D imaging capability with a mean error of 6.1 µm, where the transmit center frequency is 2.0 MHz and the S/N ratio is 23 dB. These results demonstrate the robustness of the proposed imaging algorithm compared with a conventional Envelope algorithm.

  • Pedestrian Imaging Using UWB Doppler Radar Interferometry

    Kenshi SAHO  Takuya SAKAMOTO  Toru SATO  Kenichi INOUE  Takeshi FUKUDA  

     
    PAPER-Sensing

      Vol:
    E96-B No:2
      Page(s):
    613-623

    The imaging of humans using radar is promising for surveillance systems. Although conventional radar systems detect the presence or position of intruders, it is difficult to acquire shape and motion details because the resolution is insufficient. This paper presents a high-resolution human imaging algorithm for an ultra-wideband (UWB) Doppler radar. The proposed algorithm estimates three-dimensional human images using interferometry and, using velocity information, rejects false images created by the interference of body parts. Experiments verify that our proposed algorithm achieves adequate pedestrian imaging. In addition, accurate shape and motion parameters are extracted from the estimated images.

  • High Sensitivity Radar-Optical Observations of Faint Meteors

    Koji NISHIMURA  Toru SATO  Takuji NAKAMURA  Masayoshi UEDA  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1877-1884

    In order to assess the possible impacts of meteors with spacecraft, which is among major hazard in the space environment, it is essential to establish an accurate statistics of their mass and velocity. We developed a radar-optical combined system for detecting faint meteors consisting of a powerful VHF Doppler radar and an ICCD video camera. The Doppler pulse compression scheme is used to enhance the S/N ratio of the radar echoes with very large Doppler shifts, as well as to determine their range with a resolution of 200 m. A very high sensitivity of more than 14 magnitude and 9 magnitude for radar and optical sensors, respectively, has been obtained. Instantaneous direction of meteor body observed by the radar is determined with the interferometry technique. We examined the optimum way of the receiving antenna arrangements, and also of the signal processing. Its absolute accuracy was confirmed by the optical observations with background stars as a reference. By combining the impinging velocity of meteor bodies derived by the radar with the absolute visual magnitude determined by the video camera simultaneously, the mass of each meteor body was estimated. The developed observation system will be used to create a valuable data base of the mass and velocity information of faint meteors, on which very little is known so far. The data base is expected to play a vital role in our understanding of the space environment needed for designing large space structures.

  • A High-Resolution Imaging Algorithm without Derivatives Based on Waveform Estimation for UWB Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E90-B No:6
      Page(s):
    1487-1494

    UWB pulse radars enable us to measure a target location with high range-resolution, and so are applicable for measurement systems for robots and automobile. We have already proposed a robust and fast imaging algorithm with an envelope of circles, which is suitable for these applications. In this method, we determine time delays from received signals with the matched filter for a transmitted waveform. However, scattered waveforms are different from transmitted one depending on the target shape. Therefore, the resolution of the target edges deteriorates due to these waveform distortions. In this paper, a high-resolution imaging algorithm for convex targets is proposed by iteration of the shape and waveform estimation. We show application examples with numerical simulations and experiments, and confirm its capability to detect edges of an object.

  • Orbit Determination of Meteors Using the MU Radar

    Toru SATO  Takuji NAKAMURA  Koji NISHIMURA  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    1990-1995

    Meteor storms and showers are now considered as potential hazard in the space environment. Radar observations of meteors has an advantage of a much higher sensitivity over optical observations. The MU radar of Kyoto University, Japan has a unique capability of very fast beam steerability as well as a high sensitivity to the echoes from ionization around the meteors. We developed a special observation scheme which enables us to determine the orbit of individual meteors. The direction of the target is determined by comparing the echo intensity at three adjacent beams. The Doppler pulse compression technique is applied to improve the signal-to-noise ratio of the echoes from the very fast target, and also to determine the range accurately. The developed scheme was applied to the observation made during the Leonid meteor storm on November 18, 1998 (JST). Estimated orbital distribution seems to suggest that the very weak meteors detected by the MU radar are dominated by sporadic meteors rather than the stream meteors associated with the Leonids storm.

  • Parallel Viterbi Decoding Implementation by Multi-Microprocessors

    Hui ZHAO  Xiaokang YUAN  Toru SATO  Iwane KIMURA  

     
    PAPER-Communication Theory

      Vol:
    E76-B No:6
      Page(s):
    658-666

    The Viterbi algorithm is a well-established technique for channel and source decoding in high performance digital communication systems. However, excessive time consumption makes it difficult to design an efficient high-speed decoder for practical application. This paper describes the implementation of parallel Viterbi algorithm by multi-microprocessors. Internal computations are performed in a parallel fashion. The use of microprocessors allows low-cost implementation with moderate complexity. The software and hardware implementations of the Viterbi algorithm on parallel multi-microprocessors for real-time decoding are presented. The implemented method is based on a combination of forming a set of tables and calculations. For efficient operation under fully parallel Viterbi decoding by microprocessors, we considered: (1) branch metrics processing, path metrics updating, path memory updating and decoding output for microprocessor, (2) efficient decomposition of the sequential Viterbi algorithm into parallel algorithms, (3) minimization of the communication among the microprocessors. The practical solutions for the problems of synchronization among the miroprocessors, interconnection network for communication among the microprocessors and memory management are discussed. Furthermore the performance and the speed of the parallel Viterbi decoding are given. For a fixed processing speed of given hardwares, parallel Viterbi decoding allows a linear speed up in the throughput rate with a linear increase in hardware complexity.

  • 2-Dimensional Accurate Imaging with UWB Radar Using Indoor Multipath Echoes for a Target in Shadow Regions

    Shuhei FUJITA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E94-B No:8
      Page(s):
    2366-2374

    UWB (Ultra Wide-Band) pulse radar is promising for surveillance systems because it has an outstanding high range-resolution. To realize an accurate UWB radar imaging system, we propose a new approach that employs multipath echoes from a target in an indoor environment. Using multipath echoes, the proposed system can accurately estimate images, even for targets in a shadow region where the targets are out of sight of the antenna. We apply a simple interferometry technique using the multiple mirror image antennas generated by multipath propagation. We find that this simple method also produces many undesired false image points. To tackle this issue, we also propose an effective false image reduction algorithm to obtain a clear image. Numerical simulations verify that most of the false image points are removed and the target shape is accurately estimated.

  • Fast and Accurate 3-D Imaging Algorithm with Linear Array Antennas for UWB Pulse Radars

    Shouhei KIDERA  Yusuke KANI  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E91-B No:8
      Page(s):
    2683-2691

    Pulse radars with UWB signals are promising as a high-resolution imaging technique that can be used for the non-destructive measurement of surface details in industrial products such as antennas and aircraft. We have already proposed a fast 3-D imaging algorithm, SEABED, that utilizes a reversible transform between the time delay and the target boundary. However, data acquisition is time-consuming when obtaining an accurate image because it assumes a mono-static radar with 2-D scanning of an antenna. In this paper, we utilize linear array antennas and propose a fast and accurate imaging algorithm. We extend the reversible transform for mono-static radars to apply to bi-static radars to reduce the data acquisition time. The effectiveness of the proposed method is verified with numerical simulations and experiments.

  • A Faster Algorithm of Minimizing AND-EXOR Expressions

    Takashi HIRAYAMA  Yasuaki NISHITANI  Toru SATO  

     
    PAPER-Logic Synthesis

      Vol:
    E85-A No:12
      Page(s):
    2708-2714

    It has been considered difficult to obtain the minimum AND-EXOR expression of a given function with six variables in a practical computing time. In this paper, a faster algorithm of minimizing AND-EXOR expressions is proposed. We believe that our algorithm can compute the minimum AND-EXOR expressions of any six-variable and some seven-variable functions practically. In this paper, we first present a naive algorithm that searches the space of expansions of a given n-variable function f for a minimum expression of f. The space of expansions are generated by using all combinations of (n-1)-variable product terms. Then, how to prune the branches in the search process and how to restrict the search space to obtain the minimum solutions are discussed as the key point of reduction of the computing time. Finally a faster algorithm is constructed by using the methods discussed. Experimental results to demonstrate the effectiveness of these methods are also presented.

  • A Target Shape Estimation Algorithm for Pulse Radar Systems Based on Boundary Scattering Transform

    Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E87-B No:5
      Page(s):
    1357-1365

    Environment measurement is an important issue for various applications including household robots. Pulse radars are promising candidates in a near future. Estimating target shapes using waveform data, which we obtain by scanning an omni-directional antenna, is known as one of ill-posed inverse problems. Parametric methods such as Model-fitting method have problems concerning calculation time and stability. We propose a non-parametric algorithm for high-resolution estimation of target shapes in order to solve the problems of parametric algorithms.

  • Adaptive Sidelobe Cancellation Technique for Atmospheric Radars Containing Arrays with Nonuniform Gain

    Taishi HASHIMOTO  Koji NISHIMURA  Toru SATO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/06/21
      Vol:
    E99-B No:12
      Page(s):
    2583-2591

    The design and performance evaluation is presented of a partially adaptive array that suppresses clutter from low elevation angles in atmospheric radar observations. The norm-constrained and directionally constrained minimization of power (NC-DCMP) algorithm has been widely used to suppress clutter in atmospheric radars, because it can limit the signal-to-noise ratio (SNR) loss to a designated amount, which is the most important design factor for atmospheric radars. To suppress clutter from low elevation angles, adding supplemental antennas that have high response to the incoming directions of clutter has been considered to be more efficient than to divide uniformly the high-gain main array. However, the proper handling of the gain differences of main and sub-arrays has not been well studied. We performed numerical simulations to show that using the proper gain weighting, the sub-array configuration has better clutter suppression capability per unit SNR loss than the uniformly divided arrays of the same size. The method developed is also applied to an actual observation dataset from the MU radar at Shigaraki, Japan. The properly gain-weighted NC-DCMP algorithm suppresses the ground clutter sufficiently with an average SNR loss of about 1 dB less than that of the uniform-gain configuration.

  • Two-Dimensional Imaging of a Pedestrian Using Multiple Wideband Doppler Interferometers with Clustering-Based Echo Association

    Takuya SAKAMOTO  Hiroki YAMAZAKI  Toru SATO  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1795-1803

    This paper presents a method of imaging a two-dimensional section of a walking person using multiple Doppler radar systems. Although each simple radar system consists of only two receivers, different radial speeds allow target positions to be separated and located. The signal received using each antenna is processed employing time-frequency analysis, which separates targets in the time-range-velocity space. This process is followed by a direction-of-arrival estimation employing interferometry. The data obtained using the multiple radar systems are integrated using a clustering algorithm and a target-tracking algorithm. Through realistic simulations, we demonstrate the remarkable performance of the proposed imaging method in generating a clear outline image of a human target in unknown motion.

  • High-Resolution Radar Image Reconstruction Using an Arbitrary Array

    Toshio WAKAYAMA  Toru SATO  Iwane KIMURA  

     
    PAPER-Subsurface Radar

      Vol:
    E76-B No:10
      Page(s):
    1305-1312

    Radar imaging technique is one of the most powerful tool for underground detection. However, performance of conventional methods is not sufficiently high when the observational direction or the aperture size is restricted. In the present paper, an image reconstruction method based on a model fitting with nonlinear least-squares has been developed, which is applicable to arbitrarily arranged arrays. Reconstruction is executed on the assumption that targets consist of discrete point scatterers embedded in a homogeneous medium. Model fitting is iterated as the number of point target in the assumed model is increased, until the residual in fitting becomes unchanged or small enough. A penalty function is used in nonlinear least-squares to make the algorithm stable. Fundamental characteristics of the method revealed with computer simulation are described. This method focuses a much sharper image than that obtained by the conventional aperture synthesis technique.

1-20hit(33hit)