The search functionality is under construction.

Author Search Result

[Author] Kentaro ISODA(3hit)

1-3hit
  • Experimental Verification of a Doppler Velocity Measurement Method with Second-Time-Around Echo Suppression for Synthetic Bandwidth Radars

    Kentaro ISODA  Teruyuki HARA  

     
    PAPER-Sensing

      Pubricized:
    2017/03/15
      Vol:
    E100-B No:10
      Page(s):
    1968-1975

    Range resolution is one of the metrics of radar performance. Synthetic bandwidth radar has been proposed for high-range-resolution. The transmitted frequency and down-conversion frequency of this type of radar are shifted by fixed amounts from pulse to pulse. Received signals are synthesized by taking IFFT for high-range-resolution. However, this type of radar has a problem with second-time-around echoes since multiple pulses are utilized. Moreover, a range shift occurs due to Doppler velocity. Thus second-time-around echo suppression and Doppler velocity compensation are required for accurate target range measurement. We show in this paper a Doppler velocity measurement method with second-time-around echo suppression for synthetic bandwidth radars. Our proposed method interleaves the transmission of ascending and descending frequency sequences. The Doppler velocity is measured by using a Fourier transform of the multiplication of the signals received using both sequences. The transmitted frequency difference of the adjacent pulses is wider than the bandwidth of the matched filter, so the second-time-around echoes are down-converted to the outside band of the matched filter and suppressed. We verify the principle of the proposed method using numerical simulations and experiments. The results show that second-time-around echoes were suppressed by 7.8dB, the Doppler velocity could be obtained and the range shift due to Doppler velocity was reduced by 7.37 times compared to the conventional SBR.

  • Angle Measurement Method for Two Targets within an Antenna Beamwidth Using Two Receivers

    Kentaro ISODA  Teruyuki HARA  

     
    PAPER

      Vol:
    E94-B No:11
      Page(s):
    2969-2977

    A monopulse angle measurement method is often utilized to measure a target angle. However, this method cannot measure correct angles for multiple targets which cannot be distinguished by range, Doppler frequency and beamwidth. When the number of targets which cannot be distinguished by these parameters is restricted to two, a method which can measure two targets angles has been proposed. However, an approximation is utilized with this method, so that measured angles have errors even though the signal-to-noise ratio is infinite. Another method which can simultaneously measure azimuths and elevations for only two targets has also been proposed. However, this conventional method requires four receivers, and is therefore difficult to apply when there is a hard ware limitation. In this paper, we propose a method to measure azimuths and elevations of two targets by using two receivers and a time division system. A pairing problem has occurred due to the time division angle measurement with this method, so we also propose an algorithm to solve this pairing problem. We finally verify the proposed method by a numerical simulation and experimentation. The results show that the angles of two targets can be measured by our proposed method by using two receivers.

  • Effective Echo Detection and Accurate Orbit Estimation Algorithms for Space Debris Radar

    Kentaro ISODA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E91-B No:3
      Page(s):
    887-895

    Orbit estimation of space debris, objects of no inherent value orbiting the earth, is a task that is important for avoiding collisions with spacecraft. The Kamisaibara Spaceguard Center radar system was built in 2004 as the first radar facility in Japan devoted to the observation of space debris. In order to detect the smaller debris, coherent integration is effective in improving SNR (Signal-to-Noise Ratio). However, it is difficult to apply coherent integration to real data because the motions of the targets are unknown. An effective algorithm is proposed for echo detection and orbit estimation of the faint echoes from space debris. The characteristics of the evaluation function are utilized by the algorithm. Experiments show the proposed algorithm improves SNR by 8.32 dB and enables estimation of orbital parameters accurately to allow for re-tracking with a single radar.