The search functionality is under construction.

Author Search Result

[Author] Ken HIRAGA(9hit)

1-9hit
  • A Study of Short-Range MIMO Transmission Utilizing Polarization Multiplexing for the Simplification of Decoding

    Ken HIRAGA  Kazumitsu SAKAMOTO  Kentaro NISHIMORI  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:2
      Page(s):
    459-468

    One of the procedures for increasing the number of multi-input and multi-output (MIMO) branches without increasing the computational cost for MIMO detection or multiplexing is to exploit parallel transmissions by using polarization multiplexing. In this paper the effectiveness of using polarization multiplexing is confirmed under the existence of polarization rotation, which is inevitably present in short-range multi-input and multi-output (SR-MIMO) channels with planar array antennas. It is confirmed that 8×8 SR-MIMO transmission system with polarization multiplexing has 60bit/s/Hz of channel capacity. This paper also shows a model for theoretical cross polarization discrimination (XPD) degradation, which is useful to calculate XPD degradations on diagonal paths.

  • Effectiveness of Short-Range MIMO Using Dual-Polarized Antenna

    Ken HIRAGA  Tomohiro SEKI  Kentaro NISHIMORI  Kazuhiro UEHARA  

     
    PAPER-Radio Systems

      Vol:
    E95-B No:1
      Page(s):
    87-96

    Short-range Multiple-Input-Multiple-Output (SR-MIMO) transmission is an effective technique for achieving high-speed and short-range wireless communication. With this technique, however, the optimum aperture size of array antennas grows when the transmission distance is increased. Thus, antenna miniaturization is an important issue in SR-MIMO. In this paper, we clarify the effectiveness of using dual-polarized planar antennas as a means of miniaturizing SR-MIMO array antennas by measurements and analysis of MIMO transmission characteristics. We found that even in SR-MIMO transmission, the use of dual-polarized transmission enables higher channel capacity. Dual-polarized antennas can reduce by two thirds the array area that is needed to obtain the same channel capacity. For a transmission distance of two wavelengths, the use of a dual-polarized antenna improved the channel capacity by 26 bit/s/Hz while maintaining the same number of transmitters and receivers and the same antenna aperture size. Moreover, dual-polarized SR-MIMO has a further benefit when zero-forcing (ZF) reception without transmit beamforming is adopted, i.e., it effectively simplifies hardware configuration because it can reduce spatial correlation even in narrow element spacing. In this work, we confirmed that the application of dual-polarization to SR-MIMO is an effective way to both increase channel capacity and enhance transceiver simplification.

  • Orbital Angular Momentum (OAM) Multiplexing: An Enabler of a New Era of Wireless Communications Open Access

    Doohwan LEE  Hirofumi SASAKI  Hiroyuki FUKUMOTO  Ken HIRAGA  Tadao NAKAGAWA  

     
    INVITED PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1044-1063

    This paper explores the potential of orbital angular momentum (OAM) multiplexing as a means to enable high-speed wireless transmission. OAM is a physical property of electro-magnetic waves that are characterized by a helical phase front in the propagation direction. Since the characteristic can be used to create multiple orthogonal channels, wireless transmission using OAM can enhance the wireless transmission rate. Comparisons with other wireless transmission technologies clarify that OAM multiplexing is particularly promising for point-to-point wireless transmission. We also clarify three major issues in OAM multiplexing: beam divergence, mode-dependent performance degradation, and reception (Rx) signal-to-noise-ratio (SNR) reduction. To mitigate mode-dependent performance degradation we first present a simple but practical Rx antenna design method. Exploiting the fact that there are specific location sets with phase differences of 90 or 180 degrees, the method allows each OAM mode to be received at its high SNR region. We also introduce two methods to address the Rx SNR reduction issue by exploiting the property of a Gaussian beam generated by multiple uniform circular arrays and by using a dielectric lens antenna. We confirm the feasibility of OAM multiplexing in a proof of concept experiment at 5.2 GHz. The effectiveness of the proposed Rx antenna design method is validated by computer simulations that use experimentally measured values. The two new Rx SNR enhancement methods are validated by computer simulations using wireless transmission at 60 GHz.

  • Analyses of Antenna Displacement in Short-Range MIMO Transmission over Millimeter-Wave

    Ken HIRAGA  Tomohiro SEKI  Kentaro NISHIMORI  Kenjiro NISHIKAWA  Ichihiko TOYODA  Kazuhiro UEHARA  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:10
      Page(s):
    2891-2895

    Short-range multiple-input and multiple-output (SR-MIMO) has attracted much attention, because the technique makes it possible to raise channel capacity to several hundred Gbit/s by utilizing the millimeter-wave band (e.g., 60 GHz band). Although the opposed transceiving antennas are assumed to be accurately positioned in previous studies regarding SR-MIMO, a very important issue is to evaluate the performance degradation due to displacement between MIMO transceivers. In SR-MIMO over the millimeter-wave band, any displacement is perceived as significant because the wavelength is small. This paper evaluates the influence on SR-MIMO transmission performance over millimeter-wave caused by displacement between the transmitting and receiving antennas. The channel capacity is found to degrade by 5% when the horizontal displacement is 1 mm and by 2.7% when the rotational displacement is 10 degrees. In addition, comparing performances obtained with a number of antenna array arrangements clarifies that a square pattern arrangement is suitable for short-range wireless transmission.

  • Performance Evaluation of Short-Range MIMO Using a Method for Controlling Phase Difference between Each Propagation Channel

    Kazumitsu SAKAMOTO  Ken HIRAGA  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2513-2520

    A Simple decoding method for short-range MIMO (SR-MIMO) transmission can reduce the power consumption for MIMO decoding, but the distance between the transceivers requires millimeter-order accuracy in order to satisfy the required transmission quality. In this paper, we propose a phase difference control method between each propagation channel to alleviate the requirements for the transmission distance accuracy. In the proposed method, the phase difference between each propagation channel is controlled by changing the transmission (or received) power ratio of each element of sub-array antennas. In millimeter-wave broadband transmission simulation, we clarified that when sub-array antenna spacing is set to 6.6 mm and element spacing of sub-array antenna is set to 2.48mm, the proposed method can extend the transmission distance range satisfying the required transmission quality, which is that bit error rate (BER) before error correction is less than 10-2 from 9∼29mm to 0∼50mm in QPSK, from 15∼19mm to 0∼30mm in 16QAM, and from only 15mm to 4∼22mm in 64QAM.

  • Alignment Tolerance in Multiple-Stream Transmission Using Orthogonal Directivities under Line-of-Sight Environments

    Maki ARAI  Tomohiro SEKI  Ken HIRAGA  Kazumitsu SAKAMOTO  Tadao NAKAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:6
      Page(s):
    1362-1370

    A method for increasing alignment tolerance in simple multiple-stream transmission is described. Its use of π-shifted antenna directivity phase enables it to cancel interference even when antenna placement deviations occur. The interference cancellation by using π-shifted directivities provides higher alignment tolerance than that with conventional fixed weight methods. It also provides smaller channel gain variation than can be obtained using fixed weights even when antenna displacement occurs. An objective function is described that is determined by the alignment tolerance. The function is defined to maximize the alignment tolerance. The method's validity is confirmed by an experimental analysis of two-stream transmission in which the alignment tolerance of the proposed method is compared to that of conventional fixed weight methods.

  • Analog Decoding Method for Simplified Short-Range MIMO Transmission

    Ryochi KATAOKA  Kentaro NISHIMORI  Takefumi HIRAGURI  Naoki HONMA  Tomohiro SEKI  Ken HIRAGA  Hideo MAKINO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:3
      Page(s):
    620-630

    A novel analog decoding method using only 90-degree phase shifters is proposed to simplify the decoding method for short-range multiple-input multiple-output (MIMO) transmission. In a short-range MIMO transmission, an optimal element spacing that maximizes the channel capacity exists for a given transmit distance between the transmitter and receiver. We focus on the fact that the weight matrix by zero forcing (ZF) at the optimal element spacing can be obtained by using dividers and 90-degree phase shifters because it can be expressed by a unitary matrix. The channel capacity by the proposed method is next derived for the evaluation of the exact limitation of the channel capacity. Moreover, it is shown that an optimal weight when using directional antennas can be expressed by using only dividers, 90-degree phase shifters, and attenuators, regardless of the beam width of the directional antenna. Finally, bit error rate and channel capacity evaluations by both simulation and measurement confirm the effectiveness of the proposed method.

  • Spatial Division Transmission without Signal Processing for MIMO Detection Utilizing Two-Ray Fading

    Ken HIRAGA  Kazumitsu SAKAMOTO  Maki ARAI  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2491-2501

    This paper presents a spatial division (SD) transmission method based on two-ray fading that dispenses with the high signal processing cost of multiple-input and multiple-output (MIMO) detection and antennas with narrow beamwidth. We show the optimum array geometries as functions of the transmission distance for providing a concrete array design method. Moreover, we clarify achievable channel capacity considering reflection coefficients that depend on the polarization, incident angle, and dielectric constant. When the ground surface is conductive, for two- and three-element arrays, channel capacity is doubled and tripled, respectively, over that of free space propagation. We also clarify the application limit of this method for a dielectric ground by analyzing the channel capacity's dependency on the dielectric constant. With this method, increased channel capacity by SD transmission can be obtained merely by placing antennas of wireless transceiver sets that have only SISO (single-input and single-output) capability in a two-ray propagation environment. By using formulations presented in this paper for the first time and adding discussions on the adoption of polarization multiplexing, we clarify antenna geometries of SD transmission systems using polarization multiplexing for up to six streams.

  • Orthogonalized Directional MIMO Transmission Using Higher Order Mode Microstrip Antennas

    Maki ARAI  Tomohiro SEKI  Ken HIRAGA  Kazumitsu SAKAMOTO  Hideki TOSHINAGA  Tadao NAKAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    48-57

    Multiple-input multiple-output (MIMO) technology is a useful means of achieving the higher data rates needed in the latest wireless devices. However, weighting calculations for MIMO transmission become complicated when there are a large number of antennas. Thus, developing a simpler way to transmit and receive multiple streams is an idea worth considering. With this in mind, we propose a spatial division method using orthogonal directivities formed by using higher order modes of rectangular microstrip antennas. Each of them is formed by one antenna element so that channels are orthogonalized only by antennas. We verify antenna radiation characteristics by using higher order mode microstrip antennas and confirm that orthogonal directivities are obtained with them. Measurement of two stream transmission reveals that the method achieves almost the same channel capacity as that of an eigenmode-beamforming method because of the high multiplexing gain it achieves.