Mitsuyoshi KISHIHARA Isao OHTA Tadashi KAWAI Kuniyoshi YAMANE
Directional couplers with flat coupling are designed by using an asymmetrical coupled-HNRD-guide consisting of two HNRD guides of different cross sections arranged closely. First, propagation characteristics of the asymmetrical coupled-HNRD-guide are analyzed by the transverse resonance technique. Next, the whole directional couplers including tapered sections are designed from the S-parameters of the coupled HNRD guides derived from a superposition of the even-like and odd-like modes. Finally, the validity of the design procedure is confirmed by an em-simulator (HFSS).
Daichi FURUBAYASHI Yuta KASHIWAGI Takanori SATO Tadashi KAWAI Akira ENOKIHARA Naokatsu YAMAMOTO Tetsuya KAWANISHI
A new structure of the electro-optic modulator to compensate the third-order intermodulation distortion (IMD3) is introduced. The modulator includes two Mach-Zehnder modulators (MZMs) operating with frequency chirp and the two modulated outputs are combined with an adequate phase difference. We revealed by theoretical analysis and numerical calculations that the IMD3 components in the receiver output could be selectively suppressed when the two MZMs operate with chirp parameters of opposite signs to each other. Spectral power of the IMD3 components in the proposed modulator was more than 15dB lower than that in a normal Mach-Zehnder modulator at modulation index between 0.15π and 0.25π rad. The IMD3 compensation properties of the proposed modulator was experimentally confirmed by using a dual parallel Mach-Zehnder modulator (DPMZM) structure. We designed and fabricated the modulator with the single-chip structure and the single-input operation by integrating with 180° hybrid coupler on the modulator substrate. Modulation signals were applied to each modulation electrode by the 180° hybrid coupler to set the chirp parameters of two MZMs of the DPMZM. The properties of the fabricated modulator were measured by using 10GHz two-tone signals. The performance of the IMD3 compensation agreed with that in the calculation. It was confirmed that the IMD3 compensation could be realized even by the fabricated modulator structure.
Mitsuyoshi KISHIHARA Tadashi KAWAI Yoshihiro KOKUBO Isao OHTA
This paper suggests a new type of 180-degree 3 dB hybrid, which consists of a cylindrical cavity and four E-plane rectangular waveguides radially coupled with it, and shows that good hybrid properties are realized by modifying the positions of the four input/output waveguides and the radius of the cylindrical cavity that are determined by the field distribution of the TE111 resonant mode. Moreover, a method of broadening the bandwidth with additional impedance steps is described. The present hybrid is marked by simple structure, and hence is useful for applications at millimeter wave frequencies and to high-power microwave systems. Experimental verification is additionally shown.
This paper presents a miniaturized reverse-phase hybrid ring by the use of shunt capacitors, and successfully designs a very miniature hybrid ring of a 0.28-wavelength circumference with a wide bandwidth comparable to the regular reverse-phase hybrid ring based on the equivalent admittance approach. Moreover, a method of broadening the bandwidth with adding a matching network consisting of a very short transmission line and two shunt capacitors at each port is also described. The validity of the proposed design is demonstrated by electromagnetic simulator (Sonnet em) for a uniplanar hybrid ring.
Akira ENOKIHARA Masashi YAMAMOTO Tadashi KAWAI Tetsuya KAWANISHI
An electro-optic (EO) modulator integrated with the microwave planar circuit directly formed on a LiNbO3 (LN) substrate for low frequency-chirp performance and compact configuration is introduced. Frequency chirp of EO intensity modulators was investigated and a dual-electrode Mach-Zehnder (MZ) modulator combined with a microwave rat-race (RR) circuit was considered for the low-chirp modulation. The RR circuit, which operates as a 180-degree hybrid, was designed on a z-cut LN substrate to create two modulation signals of the same amplitude in anti-phase with each other from a single input signal. Output ports of the RR were connected to the modulation electrodes on the substrate. The two signals of the equal amplitude drive two phase modulation parts of the modulator so that the symmetric interference are realized to obtain intensity modulation of low frequency-chirp. The modulator was designed and fabricated on a single LN substrate for around 10 GHz modulation frequencies and 1550 nm light wavelength. The chirp parameters were measured to be less than 0.2 in the frequency range between 8 and 12 GHz. By compensating imbalance of the light power splitting in the waveguide MZ interferometer the chirp could be reduced even more.
Tadashi KAWAI Yuma SUMITOMO Akira ENOKIHARA Isao OHTA Kei SATOH Yasunori SUZUKI Hiroshi OKAZAKI Shoichi NARAHASHI
In this paper, we consider a parallel ring-line rat-race circuit realized by replacing some parts of the ring-lines with composite right-/left-handed transmission lines (CRLH-TLs). For a conventional rat-race circuit, the minimum coupling factor is limited by the highest impedance of the ring-lines that can be manufactured by general printed circuit board (PCB) technologies. However, the coupling factor of the parallel ring-line type rat-race circuit proposed in this paper is determined by the difference between the admittances of the parallel ring-lines. As a result of designing parallel ring-line rat-race circuits having coupling factors of $-20$ and $-30$,dB for an operation frequency of 4,GHz, the proposed rat-race circuit realizes broadband characteristics of about 35.5% according to the numerical results for the $-20$,dB circuit. Furthermore, broadband characteristics including reflection, isolation, and couplings can be maintained for the fabricated $-20$,dB rat-race circuit up to an input power of 40,dBm.
Katsuyuki YAMAMOTO Tadashi KAWAI Akira ENOKIHARA Tetsuya KAWANISHI
Optical single sideband (SSB) modulation with the Mach-Zehnder (MZ) interferometer was realized by integrating the modulation electrode with the branch-line coupler (BLC) as a 90-degree hybrid onto the modulator substrate. In this paper, BLCs of the microsrtip-line structure were miniaturized on modulator substrates, LiNbO3 (LN), to realize more compact optical SSB modulators. We introduced two techniques of miniaturizing the BLC, one is using periodically installed open-circuited stabs and the other is installing series capacitors. Compared with a conventional pattern of the BLC, an area of the miniaturized BLC by using periodically installed open-circuited stubs was reduced to about 50%, and that by installing series capacitors was done to about 60%. The operation of these miniaturized BLCs was experimentally confirmed as the 90-degree hybrid at around 10GHz. Output ports of each miniaturized BLC were directly connected with the modulation electrode on the modulator substrate. Thereby, we fabricated two types of compact SSB modulators for 1550nm light wavelength. In the experiments, the optical SSB modulation was successfully confirmed by the output light spectra and the sideband suppression ratio of more than 30dB were observed.
Tadashi KAWAI Yasuaki NAKASHIMA Yoshihiro KOKUBO Isao OHTA
This paper describes a novel Wilkinson power divider operating at two arbitrary different frequencies. The proposed divider consists of two-section transmission lines and a series RLC circuit connected between two output ports. The circuit parameters for a dual-band operation are derived by the even/odd mode analysis. Equal power split, complete matching, and good isolation between two output ports are numerically demonstrated. Dual-band and broadband Wilkinson power dividers can be successfully designed. Finally, verification of this design method is also shown by electromagnetic simulations and experiments.
Yosuke OKADA Tadashi KAWAI Akira ENOKIHARA
In this paper, we propose a design method of compact multi-way Wilkinson power divider with a multiband operation for size reduction and band broadening. The proposed divider consists of multisection LC-ladder circuits in the division arms and isolation circuits between the output ports. To validate design procedures, we fabricated a trial divider at VHF band. The circuit layout of the trial divider was decided by using an electromagnetic simulator (Sonnet EM). Because the proposed divider consists of lumped element circuits, we can realize great miniaturization of a circuit area compared to that of the conventional Wilkinson power divider. The circuit size of the trial divider is 35 mm square. The measurement results for the trial divider by using a vector network analyzer indicates a relative bandwidth of about 60% under -17 dB reflection, flat power division within ±0.1 dB, and very low phase imbalances under 1.0 degree over the wide frequency range.
Tadashi KAWAI Kensuke NAGANO Akira ENOKIHARA
This paper presents a lumped-element Wilkinson power divider (WPD) using LC-ladder circuits composed of a capacitor and an inductor, and a series LR/CR circuit. The proposed WPD has only seven elements. As a result of designing the divider based on an even/odd mode analysis technique, we theoretically show that broadband WPDs can be realized compared to lumped-element WPDs composed of Π/T-networks and an isolation resistor. By designing the WPD to match at two operating frequencies, the relative bandwidth of about 42% can be obtained. This value is larger than that of the conventional WPD based on the distributed circuit theory. Electromagnetic simulation and experiment are performed to verify the design procedure for the lumped-element WPD designed at a center frequency of 922.5MHz, and good agreement with both is shown.
Isao OHTA Tadashi KAWAI Yoshihiro KOKUBO
This paper treats a new-type power combining system of four oscillators equally coupled to one another through an eight-port hybrid. This system is marked by easy analyzability and adjustability from its symmetrical construction. In addition, a combined power from the four oscillators is distinguishably delivered to an arbitrary port of four output ports, and hence can be switched in four ways. Experimental corroboration is presented also.
Yoshihiro KOKUBO Sotaro YOSHIDA Tadashi KAWAI
A metallic waveguide with dual in-line dielectric rods can propagate electromagnetic waves more than two times higher than the cutoff frequency region and without higher modes [1]. If the straight portion in the waveguide has even symmetry, then dielectric rods are only required in the bent portion. Connection losses between the portions are improved by adding other dielectric rods.
Hiroaki IKEUCHI Tadashi KAWAI Mitsuyoshi KISHIHARA Isao OHTA
This paper proposes a novel waveguide intersection separating two H-plane waveguide systems from each other. If a four-port network in a four-fold rotational symmetry is completely matched, it has necessarily intersection properties. The proposed waveguide intersection consists of a square H-plane waveguide planar circuit connected four input/output waveguide ports in a four-fold rotational symmetry, and several metallic posts inserted at the junction without destroying the symmetry to realize a perfect matching. By optimizing the circuit parameters, high isolation properties are obtained in a relatively wide frequency band of about 8.6% for return loss and isolation better than 20 and 30 dB, respectively, for a circuit designed at 10 GHz. The proposed waveguide intersection can be analyzed by H-plane planar circuit approach, and possess advantages of compactness, simplicity, and high-power handling capability. Furthermore, an SIW intersection is designed by applying H-plane planar circuit approach to a waveguide circuit filled with dielectric material, and high isolation properties similar to H-plane waveguide intersection can be realized. The validity of these design concepts is confirmed by em-simulations and experiments.
This paper presents a design procedure of a directional coupler consisting of a twofold symmetric four-port circuit with four identical matching networks at each port. The intrinsic power-split ratio and the equivalent admittance of the directional coupler are formularized in terms of the eigenadmittances of the original four-port without the matching networks. These formulas are useful for judgment on the realizability of a directional coupler in a given circuit structure and for design of the matching networks. Actually, the present procedure is applied to designing various quadrature hybrids and directional couplers, and its practical usefulness as well as several new circuit structures are demonstrated.
Takao FUJII Isao OHTA Tadashi KAWAI Yoshihiro KOKUBO
This paper presents a new quarter-wavelength microstrip coupler compensated with a periodic sequence of floating metallic strips in the slots on the inner edges. After describing the characteristics of the coupled-line, as an example, a 15-dB coupler is designed and a high directivity of 30 dB or more in theory is obtained over a full band of a single-section coupler. Next, couplers with various coupling factors are designed, and the usefulness for very loose coupling is demonstrated. Furthermore, a three-section coupler is designed to show the effectiveness in a wide frequency range. The validity of the design concept and procedure is confirmed by electromagnetic simulations and experiments.
Yoshihiro KOKUBO Tadashi KAWAI
A system that has an array of dielectric rods at the center of a waveguide was previously suggested for single mode propagation with a wide frequency range. However, it is difficult to introduce the wave source from a coaxial cable, due to use of the TE10-like and TE20-like modes. In this investigation, an asymmetric setup of the dielectric rods is proposed for better coupling efficiency of the TE10 mode.
Shotaro YASUMORI Seiya MORIKAWA Takanori SATO Tadashi KAWAI Akira ENOKIHARA Shinya NAKAJIMA Kouichi AKAHANE
An optical mode multiplexer was newly designed and fabricated using LiNbO3 waveguides. The multiplexer consists of an asymmetric directional coupler capable of achieving the phase-matching condition by the voltage adjustment. The mode conversion efficiency between TM0 and TM1 modes was quantitatively measured to be 0.86 at maximum.
Mitsuyoshi KISHIHARA Kuniyoshi YAMANE Isao OHTA Tadashi KAWAI
This paper treats multi-way microstrip power dividers composed of multi-step, multi-furcation, and corners. Since the design procedure is founded on the planar circuit approach in combination with the segmentation method, optimization of the circuit configuration can be performed in a reasonable short computation time when applying the Powell's optimization algorithm. Actually, broadband 3- and 4-way power dividers with mitered bends are designed, and fractional bandwidths of about 90% and 100% are realized for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB, respectively. The validity of the design results is confirmed by an EM-simulator (HFSS) and experiments.
Anna HIRAI Yuichi MATSUMOTO Takanori SATO Tadashi KAWAI Akira ENOKIHARA Shinya NAKAJIMA Atsushi KANNO Naokatsu YAMAMOTO
A Mach-Zehnder optical modulator with the tunable multimode interference coupler was fabricated using Ti-diffused LiNbO3. The modulation extinction ratio could be voltage controlled to maximize up to 50 dB by tuning the coupler. Optical single-sideband modulation was also achieved with a sideband suppression ratio of more than 30 dB.
Mitsuyoshi KISHIHARA Hiroaki IKEUCHI Yuichi UTSUMI Tadashi KAWAI Isao OHTA
The metallic waveguide is one of many effective media for millimeter- and submillimeter-waves because of the advantage of its low-loss nature. This paper describes the fabrication method of PTFE-filled waveguide components with the use of the SR (synchrotron radiation) direct etching process of PTFE, sputter deposition of metal, and electroplating. PTFE is known as a difficult material to process with high precision. However, it has been reported that PTFE microstructures can be fabricated by the direct exposure to SR. First, an iris-coupled waveguide BPF with 5-stage Chebyshev response is designed and fabricated for the Q-band. It is demonstrated that the present process is applicable for the fabrication of the practical components inclusive of narrow patterns. Then, a cruciform 3 dB coupler with air-filled posts is designed and fabricated for the Q-band. Directivity and matched state of the coupler can be realized by “holes” in the dielectric material. The measurement results are also shown.