1-3hit |
Kunihiro KAWAI Hiroshi OKAZAKI Shoichi NARAHASHI Noriharu SUEMATSU
This paper presents a theoretical analysis and experimental confirmation of a tunable ring resonator that can independently change its resonant frequency and bandwidth. The tunable ring resonator comprises a ring resonator, three tunable capacitors, and switches. The resonant frequency changes according to the capacitance of tunable capacitors, and the bandwidth varies by changing the state of the switches. The unique feature of the resonator is that the resonant frequency remains steady when the bandwidth is changed. The fundamental characteristics are shown based on linear circuit simulation and electromagnetic simulation results. The resonator is fabricated using GaAs FET single-pole single-throw switches. The fabricated resonator changes the resonant frequency from 1.5 GHz to 2.0 GHz and the fractional bandwidth from 5% to 30%.
Kunihiro KAWAI Daisuke KOIZUMI Hiroshi OKAZAKI Shoichi NARAHASHI
This paper presents a simple-structured tunable resonator employing semiconductor switches that can change its resonant frequency discretely but precisely. The tunable resonator comprises a transmission line with a comb-shaped pattern and multiple single-pole single-throw (SPST) switches placed between the teeth of the comb-shaped pattern. The resonator changes its resonant frequency according to the switch states, by controlling the path length carrying a high frequency current. The characteristics of the proposed resonator are evaluated through both method of moment electromagnetic simulation and fabrication, using GaAs FET SPST switches. The fabricated resonator changes its resonant frequency from 1.63,GHz to 1.85,GHz. This paper also introduces two circuit designs based on the proposed resonator that expands the tuning range of the resonant frequency or the number of resonant frequencies to be obtained.
Kunihiro KAWAI Hiroshi OKAZAKI Shoichi NARAHASHI Mizuki MOTOYOSHI Noriharu SUEMATSU
This paper presents a theoretical analysis of a tunable resonator using a coupled line and switches for the first time. The tunable resonator has the capability to tune its resonant frequency and bandwidth. The resonator has two suitable features on its tunable capability. The first feature is that the resonator retains its resonant frequency during bandwidth tuning. The second feature is that the on-state switch for tuning the bandwidth does not affect the insertion loss at the resonant frequency. These features are theoretically confirmed by its mathematically derived input impedance. The results from electromagnetic simulation and measurement of the fabricated tunable resonator also confirm these features. The fabricated tunable resonator changes the resonant frequency from 2.6 GHz to 6.4 GHz and bandwidth between 9% and 55%.