The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Osamu FUJIWARA(49hit)

1-20hit(49hit)

  • Quantification Measurement of Discontact Phenomena in Sliding-Contact

    Souichi TSUKAMOTO  Osamu FUJIWARA  Takashi AZAKAMI  

     
    LETTER-Materials

      Vol:
    E73-E No:7
      Page(s):
    1156-1157

    This letter describes quantification measurements of the discontact phenomena appearing in the sliding-contacts. The inherent properties of the discontact phenomena are shown by statistically measuring the occurrence time-rates of the discontacts and the discharges.

  • Calculation of SAR inside Human Eyeball due to Portable Transmitter

    Hirotada HIGASHIHAMA  Osamu FUJIWARA  Takashi AZAKAMI  Yoshifumi AMEMIYA  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E73-E No:4
      Page(s):
    522-524

    For studying the harmful influences of a portable transmitter on the human eyeball, this letter examines numerically the specific absorption rate (SAR) using the sphere model exposed to the near-fields of a half-wavelength dipole antenna. The SAR's inside the eyeball due to the 1.5 GHz near-field exposure are calculated in relation to the antenna location.

  • A Method for Estimating Discontact Rate by Impulse Response to Noise Currents of Pantograph

    Kohzi YAMASHITA  Osamu FUJIWARA  Yoshifumi AMEMIYA  

     
    LETTER-Instrumentation and Electronic Circuits

      Vol:
    E69-E No:4
      Page(s):
    488-490

    This letter presents a new method for estimating discontact rate using the impulsive responses in VHF band to the noise currents flowing through the pantograph of an electric car. Numerical computation to confirm the validity of the method above is also given.

  • Occurrence Frequencies of Microarcs Caused by Carbon Sliding-Contacts

    Souichi TSUKAMOTO  Osamu FUJIWARA  Kazuo KATOH  Takashi AZAKAMI  

     
    LETTER-Components and Materials

      Vol:
    E71-E No:4
      Page(s):
    278-279

    This letter describes the occurrence-frequencies of the microarcs in the carbon sliding-contacts which are known to give the low radio-noises. A method is presented for statistically evaluating the arc occurrence-frequencies. The measurement results are also shown.

  • FOREWORD

    Masamitsu TOKUDA  Yoshio KAMI  Osamu FUJIWARA  Tamotsu NINOMIYA  

     
    FOREWORD

      Vol:
    E75-B No:3
      Page(s):
    99-100
  • A Method for Estimating Discontact Rate from Pantograph Noise Currenct by Using Statistical Test

    Koji YAMASHITA  Osamu FUJIWARA  Kazuo KATOH  Takashi AZAKAMI  

     
    LETTER-Instrumentation and Electronic Circuits

      Vol:
    E70-E No:4
      Page(s):
    355-357

    This letter presents a method for estimating the discontact rate by the pantograph noise current using a statistical test. This method requires no apriori information on the current collection system used in the previous methods. The experiment is performed to verify the validity of the above method.

  • Correlation between Spatial Distributions of Surface-SAR and Magnetic Near-Field in Realistic Head Model for Microwave Exposure

    Osamu FUJIWARA  Michihiko NOMURA  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    765-767

    Correlation between the surface-SAR and external magnetic near-field in a realistic head model for 1.5GHz microwave far-field exposure is described. The regression relation is shown between the one gram averaged SAR and squared external magnetic field on the cross sectional perimeter of the head model.

  • A Method for Real-time Visualization of Static Electricity Distribution

    Takeshi KONDOH  Osamu FUJIWARA  Kazuo KATOH  Takashi AZAKAMI  

     
    LETTER-Instrumentation and Electronic Circuits

      Vol:
    E71-E No:4
      Page(s):
    367-368

    This letter presents a method for real-time visualization of static electricity distribution which can be achieved by rapidly measuring the voltages induced on the array electrodes. For verifying the validity of this method, the measurement examples on the charged sheets are demonstrated.

  • Characteristics of Discharge Currents Measured through Body-Attached Metal for Modeling ESD from Wearable Electronic Devices

    Takeshi ISHIDA  Fengchao XIAO  Yoshio KAMI  Osamu FUJIWARA  Shuichi NITTA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E99-B No:1
      Page(s):
    186-191

    To investigate electrostatic discharge (ESD) immunity testing for wearable electronic devices, the worst scenario i.e., an ESD event occurs when the body-mounted device approaches a grounded conductor is focused in this paper. Discharge currents caused by air discharges from a charged human through a hand-held metal bar or through a semi-sphere metal attached to the head, arm or waist in lieu of actual wearable devices are measured. As a result, it is found that at a human charge voltage of 1kV, the peak current from the semi-sphere metal is large in order of the attachment of the waist (15.4A), arm (12.8A) and head (12.2A), whereas the peak current (10.0A) from the hand-held metal bar is the smallest. It is also found that the discharge currents through the semi-sphere metals decrease to zero at around 50ns regardless of the attachment positions, although the current through the hand-held metal bar continues to flow at over 90ns. These discharge currents are further characterized by the discharge resistance, the charge storage capacitance and the discharge time constant newly derived from the waveform energy, which are validated from the body impedance measured through the hand-held and body-mounted metals. The above finding suggests that ESD immunity test methods for wearable devices require test specifications entirely different from the conventional ESD immunity testing.

  • Computation of Potential Attenuation Process for Charged Human Body Using Numerical Inverse Laplace Transform

    Osamu FUJIWARA  Hironori ENDOH  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    188-192

    The potential attenuation process of charged human body (HB) is analyzed. A two-dimensional circuit model is presented for predicting the potential attenuation characteristics of the HB charged on the floor. The theoretical equation for the HB potential is derived in the closed form in the Laplacian transformation domain, and the numerical inverse Laplace transform is used to compute it. The half-life or relaxation time of the HB potential for decay is numerically examined with respect to the electrical parameters of shoes. The experiment is also conducted for verifying the validity of the computed result.

  • A Source Model and Experimental Validation for Electromagnetic Noises from Electrostatic Discharge Generator

    Takeshi ISHIDA  Yukihiro TOZAWA  Mutsumu TAKAHASHI  Fengchao XIAO  Yoshio KAMI  Osamu FUJIWARA  Shuichi NITTA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:2
      Page(s):
    317-323

    Electrostatic discharge (ESD) generators cause electromagnetic (EM) noises not only at ESD tests but also even before and after the tests. This may provide inconsistent test results, but the mechanism has not been well examined. To explain the mechanism qualitatively, we investigated a generation source model of EM noises from an ESD generator in conjunction with the functional control sequences of built-in relay switches and the DC high voltage power supply. To validate this model, we used a magnetic field probe to measure the induced EM noises before, during, and after contact and air discharges in accordance with the corresponding timing of the functional control sequences. As a result, we confirmed that the EM noises are induced when the relay switches operate before and at ESD testing and after ESD tests for both contact and air discharges. In addition, we found that the noise peaks due to contact discharges increase with charge voltages, and the peaks just before and at the testing are relatively larger than the ones after the tests, while the peaks of the induced noises at the air discharge testing do not always increase with charge voltages, but reach a maximum at 3kV. In addition, the peaks of the induced noises at the air discharge testing become smaller than either the peaks just before the testing and those after the tests at charge voltages above 6kV. This suggests that the EM noises just before ESD testing and after the test may cause the EUT to malfunction when air discharge tests with charge voltages over 6kV are conducted. A new control sequence of the built-in relay switch was also proposed for reducing the EM noises after ESD tests, which was validated through noise measurements.

  • Establishment of EMC Research in Japan and its Future Prospects Open Access

    Osamu FUJIWARA  

     
    INVITED SURVEY PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2017/03/27
      Vol:
    E100-B No:9
      Page(s):
    1623-1632

    Systematic research on electromagnetic compatibility (EMC) in Japan started in 1977 by the establishment of a technical committee on “environmental electromagnetic engineering” named EMCJ, which was founded both in the Institute of Electronics and Communication Engineers or the present IEICE (Institute of Electronics, Information and Communication Engineers) and in the Institute of Electrical Engineers of Japan or the IEEJ. The research activities have been continued as the basic field of interdisciplinary study to harmonize even in the electromagnetic (EM) environment where radio waves provide intolerable EM disturbances to electronic equipment and to that environment itself. The subjects and their outcomes which the EMCJ has dealt with during about 40 years from the EMCJ establishment include the evaluation of EM environment, EMC of electric and electronic equipment, and EMC of biological effects involving bioelectromagnetics and so on. In this paper, the establishment history and structure of the EMCJ are reviewed along with the change in activities, and topics of the technical reports presented at EMCJ meetings from 2006 to 2016 are surveyed. In addition, internationalization and its related campaign are presented in conjunction with the EMCJ research activities, and the status quo of the EMCJ under the IEICE is also discussed along with the prospects.

  • TDR Analysis of Electromagnetic Radiation from a Bend of Micro-Strip Line

    Jianqing WANG  Osamu FUJIWARA  

     
    PAPER-Printed Circuit Boards

      Vol:
    E88-B No:8
      Page(s):
    3207-3212

    Discontinuity such as a bend in a micro-strip line is known as one of major radiation sources. The total radiation from the micro-strip line is, however, being generally investigated because of the difficulties in identifying the radiation from some specific location. In this paper, paying attention to the feature of TDR (Time-Domain Reflectometry) measurement, we made an attempt to extract the radiation only from the bend in a micro-strip line. Such an approach is useful in understanding its radiation mechanism. As a result, we found that the larger the bend angle is, the larger the radiation power becomes. The radiation power achieved 3.5% at maximum when the bending angle was 90at the frequencies below 1 GHz. We also examined the validity of the TDR analysis in comparison with network analyzer measurement. We obtained the radiation power versus frequency from the measured scattering parameters, which exhibited a fair agreement with the TDR result.

  • Dosimetry and Verification for 6-GHz Whole-Body Non-Constraint Exposure of Rats Using Reverberation Chamber

    Jingjing SHI  Jerdvisanop CHAKAROTHAI  Jianqing WANG  Kanako WAKE  Soichi WATANABE  Osamu FUJIWARA  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1164-1172

    With the rapid increase of various uses of wireless communications in modern life, the high microwave and millimeter wave frequency bands are attracting much attention. However, the existing databases on above 6GHz radio-frequency (RF) electromagnetic (EM) field exposure of biological bodies are obviously insufficient. An in-vivo research project on local and whole-body exposure of rats to RF-EM fields above 6GHz was started in Japan in 2013. This study aims to perform a dosimetric design for the whole-body-average specific absorption rates (WBA-SARs) of unconstrained rats exposed to 6GHz RF-EM fields in a reverberation chamber (RC). The required input power into the RC is clarified using a two-step evaluation method in order to achieve a target exposure level in rats. The two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC exposure system, is used as an evaluation method to determine the whole-body exposure level in the rats. In order to verify the validity of the two-step method, we use S-parameter measurements inside the RC to experimentally derive the WBA-SARs with rat-equivalent phantoms and then compare those with the FDTD-calculated ones. It was shown that the difference between the two-step method and the S-parameter measurements is within 1.63dB, which reveals the validity and usefulness of the two-step technique.

  • An Analytical Approach to Model Indirect Effect Caused by Electrostatic Discharge

    Osamu FUJIWARA  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    483-489

    It is well recognized that the electromagnetic interference due to indirect electrostatic discharge (ESD) is not always proportional to the ESD voltage and also that the lower voltage ESD sometimes causes the more serious failure to high-tech information equipment. In order to theoretically examine the peculiar phenomenon, we propose an analytical approach to model the indirect ESD effect. A source ESD model is given here using the spark resistance presented by Rompe and Weizel. Transient electromagnetic fields due to the ESD event are analyzed, which are compared with the experimental data carefully given by Wilson and Ma. A model experiment for indirect ESD is also conducted to confirm the validity of the ESD model presented here.

  • A Simple Method for Predicting Common-Mode Radiation from a Cable Attached to a Conducting Enclosure

    Jianqing WANG  Kohji SASABE  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:7
      Page(s):
    1360-1367

    Common-mode (CM) radiation from a cable attached to a conducting enclosure has a typical dipole-type antenna structure, in which an equivalent noise voltage source located at the connector excites the attached cable against the enclosure to produce radiated emissions. Based on this mechanism, a simple method for predicting the CM radiation from the cable/enclosure structure was proposed. The method combines an equivalent dipole approximation with sinusoidal current distribution and CM current measurement at a specified location on the cable. Its validity was examined in comparison with the far-field measurement and finite-difference time-domain (FDTD) modeling. The predicted resonance frequencies and CM radiation levels were validated with engineering accuracy, i.e., within 30 MHz and 6 dB, respectively, from the measured and FDTD-modeled results in the frequencies above 150 MHz.

  • FDTD Analysis of Dosimetry in Human Head Model for a Helical Antenna Portable Telephone

    Jianqing WANG  Osamu FUJIWARA  

     
    PAPER-EMC Simulation

      Vol:
    E83-B No:3
      Page(s):
    549-554

    This paper presents a dosimetric analysis in an anatomically realistic human head model for a helical antenna portable telephone by using the finite-difference time-domain (FDTD) method. The head model, developed from magnetic resonance imaging (MRI) data of a Japanese adult head, consists of 530 thousand voxels, of 2 mm dimensions, segmented into 15 tissue types. The helical antenna was modeled as a stack of dipoles and loops with an adequate relative weight, whose validity was confirmed by comparing the calculated near magnetic fields with published measured data. SARs are given both for the spatial peak value in the whole head and the averages in various major organs.

  • Quantification and Verification of Whole-Body-Average SARs in Small Animals Exposed to Electromagnetic Fields inside Reverberation Chamber

    Jingjing SHI  Jerdvisanop CHAKAROTHAI  Jianqing WANG  Kanako WAKE  Soichi WATANABE  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:10
      Page(s):
    2184-2191

    This paper aims to achieve a high-quality exposure level quantification of whole-body average-specific absorption rates (WBA-SARs) for small animals in a medium-size reverberation chamber (RC). A two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC-type exposure system, has been used as an evaluation method to determine the whole-body exposure level in small animals. However, there is little data that quantitatively demonstrate the validity and accuracy of this method in an RC up to now. In order to clarify the validity of the two-step method, we compare the physical quantities in terms of electric field strength and WBA-SARs by using a direct numerical assessment method known as the method of moments (MoM) with ten homogenous gel phantoms placed in an RC with 2GHz exposure. The comparison results show that the relative errors between the two-step method and the MoM approach are approximately below 10%, which reveals the validity and usefulness of the two-step technique. Finally, we perform a dosimetric analysis of the WBA-SARs for anatomical mouse models with the two-step method and determine the input power related to our developed RC-exposure system to achieve a target exposure level in small animals.

  • A Method for Visualizing 2-Dimensional Distribution of Electrostatic Charge

    Takeshi KONDOH  Osamu FUJIWARA  Kazuo KATOH  Takashi AZAKAMI  

     
    LETTER-Instrumentation and Electronic Circuits

      Vol:
    E70-E No:4
      Page(s):
    358-359

    This letter presents a method for visualizing the 2-dimensional distribution of electrostatic charge, which is based on the principle of the X-ray CT. For confirming the possibility of this method, the focusing images of the simple model are also demonstrated by a computer computation.

  • Usefulness of Spherical Model of Human Head in SAR Calculation for UHF Plane-Wave Exposure

    Osamu FUJIWARA  Koji UNO  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E76-B No:5
      Page(s):
    561-564

    This letter describes the usefulness of a homogeneous spherical model of the isolated human head in SAR calculation for UHF plane-wave exposure. Comparison is made between this SAR and several results that were computed and measured for the homogeneous but realistic whole-body model of the human by other researchers.

1-20hit(49hit)