The search functionality is under construction.

Author Search Result

[Author] Atsushi TOMIKI(5hit)

1-5hit
  • A TM010 Cavity Power-Combiner with Microstrip Line Inputs

    Vinay RAVINDRA  Hirobumi SAITO  Jiro HIROKAWA  Miao ZHANG  Atsushi TOMIKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1087-1096

    A TM010 cavity power combiner is presented, which achieves direct interface to microstrip lines via magnetic field coupling. A prototype is fabricated and its S-matrix measured. From the S-parameters we calculate that it shows less than 0.85 dB insertion loss over 250 MHz bandwidth at X-band. The return power to the input ports is less than -15 dB over this bandwidth. We verify the insertion loss estimation using S-matrix, by measuring transmission S-parameter of a concatenated 2-port divider-combiner network. Similarly analyzed is the case of performance of power combiner when one of the input fails. We find that we can achieve graceful degradation provided we ensure some particular reflection phase at the degraded port.

  • Experimental Evaluation of Ultra Wideband Wireless Links within a Spacecraft for Replacing Wired Interface Buses

    Shinichiro HAMADA  Atsushi TOMIKI  Tomoaki TODA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E96-A No:5
      Page(s):
    927-934

    A use of ultra wideband (UWB) technology within spacecrafts has been proposed with a view to partially replacing wired interface buses with wireless connections. Adoption of wireless technologies within the spacecrafts could contribute to reduction in cable weight (and launching cost as a result), reduction in the cost of manufacture, more flexibility in layout of spacecraft subsystems, and reliable connections at rotary, moving, and sliding joints. However, multipath propagation in semi-closed conductive enclosures, such as spacecrafts, restricts the link performance. In this paper, UWB and narrowband propagation were measured in a UWB frequency band (from 3.1 to 10.6 GHz, the full-band UWB approved in the United States) within a small spacecrafts and a shield box of the same size. While narrowband propagation resulted in considerable spatial variations in propagation gain due to interferences caused by multipath environments, UWB yielded none. This implies that the UWB systems have an advantage over narrowband from a viewpoint of reducing fading margins. Throughputs exceeding 80 Mb/s were obtained by means of commercially-available UWB devices in the spacecraft. Path gains and throughputs were also measured for various antenna settings and polarizations. Polarization configurations were found to produce almost no effect on average power delay profiles and substantially small effects on the throughputs. Significantly long delay spreads and thus limited link performance are caused by a conductive enclosure (the shield box) without apertures on the surfaces. Even in such an environment, it was found that delay spreads can be suppressed by partially paneling a radio absorber on the inner surfaces. More than 96 Mb/s throughputs were attained when the absorber panel covered typically 4% of the total inner surface area.

  • A Cross Polarization Suppressed Sequential Array with L-Probe Fed Rectangular Microstrip Antennas

    Kazuki IKEDA  Keigo SATO  Ken-ichi KAGOSHIMA  Shigeki OBOTE  Atsushi TOMIKI  Tomoaki TODA  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:9
      Page(s):
    2653-2655

    In this paper, we present a sequentially rotated array antenna with a rectangular patch MSA fed by an L-probe. Since it's important to decrease couplings between patch elements in order to suppress the cross-polarization level, rectangular patches with aspect ratio of k are adopted. We investigate the cross-polarization level of the sequential array and discuss the relationship between the cross-polarization level and the mutual coupling. As a result, the bandwdith of the antenna element is obtained 14.6% when its VSWR is less than 1.5, and the directivity and cross-polarization level of a 4-patch sequential array are 10.8 dBic and 1.7 dBic, respectively, where k=0.6 and the patch spacing of d=0.5 wave length. These characteristics are 5.6 dB and 5.8 dB better than the corresponding values of a square patch sequential array antenna.

  • Simulation of Interference Effects from MB-OFDM and DS-UWB to a QPSK Digital Transmission System

    Atsushi TOMIKI  Idnin PASYA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    3059-3065

    This paper reports on a study of the interference effects from 2 types of ultra wideband (UWB) sources on a QPSK transmission system by simulation. The culprit UWB sources were: multi-band orthogonal frequency-division multiple-access (MB-OFDM) and direct-sequence UWB (DS-UWB), which were modeled on the proposal specifications in the IEEE 802.15.3a to standardize high-speed wireless personal area networks. Average bit error rate (BER) degradation of the victim system was evaluated under in-band interference from the UWB signals. The proposed modified equivalent baseband system was employed in the simulation in order to reduce the simulation costs. Interference effects from the UWB sources were also examined under a Rayleigh fading channel.

  • Automatic Determination of Phase Centers and Its Application to Precise Measurement of Spacecraft Antennas in a Small Anechoic Chamber

    Yuzo TAMAKI  Takehiko KOBAYASHI  Atsushi TOMIKI  

     
    PAPER-Antennas Measurement

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    364-372

    Precise determination of antenna phase centers is crucial to reduce the uncertainty in gain when employing the three-antenna method, particularly when the range distances are short-such as a 3-m radio anechoic chamber, where the distance between the phase centers and the open ends of an aperture antenna (the most commonly-used reference) is not negligible compared with the propagation distance. An automatic system to determine the phase centers of aperture antennas in a radio anechoic chamber is developed. In addition, the absolute gain of horn antennas is evaluated using the three-antenna method. The phase centers of X-band pyramidal horns were found to migrate up to 18mm from the open end. Uncertainties in the gain were evaluated in accordance with ISO/IEC Guide 93-3: 2008. The 95% confidence interval of the horn antenna gain was reduced from 0.57 to 0.25dB, when using the phase center location instead of the open end. The phase centers, gains, polarization, and radiation patterns of space-borne antennas are measured: low and medium-gain X-band antennas for an ultra small deep space probe employing the polarization pattern method with use of the horn antenna. The 95% confidence interval in the antenna gain decreased from 0.74 to 0.47dB.