The search functionality is under construction.

Author Search Result

[Author] Hirobumi SAITO(6hit)

1-6hit
  • Recursive Probability Mass Function Method to Calculate Probability Distributions of Pulse-Shaped Signals

    Tomoya FUKAMI  Hirobumi SAITO  Akira HIROSE  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/03/27
      Vol:
    E106-A No:10
      Page(s):
    1286-1296

    This paper proposes an accurate and efficient method to calculate probability distributions of pulse-shaped complex signals. We show that the distribution over the in-phase and quadrature-phase (I/Q) complex plane is obtained by a recursive probability mass function of the accumulator for a pulse-shaping filter. In contrast to existing analytical methods, the proposed method provides complex-plane distributions in addition to instantaneous power distributions. Since digital signal processing generally deals with complex amplitude rather than power, the complex-plane distributions are more useful when considering digital signal processing. In addition, our approach is free from the derivation of signal-dependent functions. This fact results in its easy application to arbitrary constellations and pulse-shaping filters like Monte Carlo simulations. Since the proposed method works without numerical integrals and calculations of transcendental functions, the accuracy degradation caused by floating-point arithmetic is inherently reduced. Even though our method is faster than Monte Carlo simulations, the obtained distributions are more accurate. These features of the proposed method realize a novel framework for evaluating the characteristics of pulse-shaped signals, leading to new modulation, predistortion and peak-to-average power ratio (PAPR) reduction schemes.

  • Navigation Message Decoding for Rocket-Borne GPS Receivers

    Ken HARIMA  Hirobumi SAITO  Takuji EBINUMA  

     
    LETTER

      Vol:
    E95-B No:11
      Page(s):
    3428-3431

    On rocket-borne GPS receivers, the high dynamics make the use of PLL is impractical and a FLL is used. This in turn leads to a string of errors on the demodulated navigation message. The present paper proposes two decoding algorithms for GPS navigation messages suited for strings of errors. The first philosophy uses parity check syndromes to correct demodulation errors. The second philosophy uses Log Correlation Ratio (LCR) comparison along with parity check syndromes to correct for the most probable error pattern. GPS data availability can be significantly improved by using the latter.

  • SRAM: A Septum-Type Polarizer Design Method Based on Superposed Even- and Odd-Mode Excitation Analysis

    Tomoki KANEKO  Hirobumi SAITO  Akira HIROSE  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/07/08
      Vol:
    E105-C No:1
      Page(s):
    9-17

    This paper proposes an analytical method to design septum-type polarizers by assuming a polarizer as a series of four septum elements with a short ridge-waveguide approximation. We determine parameters of respective elements in such a manner that, at the center frequency, the reflection coefficient of the first element is equal to that of the second one, the reflection of the third one equals to that of the forth, and the electrical lengths of the first, second and third elements are 90 deg. We name this method the Short Ridge-waveguide Approximation Method (SRAM). We fabricated an X-band polarizer, which achieves a cross polarization discrimination (XPD) value of 40.7-64.1 dB over 8.0-8.4 GHz, without any numerical optimization.

  • 2.65Gbps Downlink Communications with Polarization Multiplexing in X-Band for Small Earth Observation Satellite Open Access

    Tomoki KANEKO  Noriyuki KAWANO  Yuhei NAGAO  Keishi MURAKAMI  Hiromi WATANABE  Makoto MITA  Takahisa TOMODA  Keiichi HIRAKO  Seiko SHIRASAKA  Shinichi NAKASUKA  Hirobumi SAITO  Akira HIROSE  

     
    POSITION PAPER-Satellite Communications

      Pubricized:
    2020/07/01
      Vol:
    E104-B No:1
      Page(s):
    1-12

    This paper reports our new communication components and downlink tests for realizing 2.65Gbps by utilizing two circular polarizations. We have developed an on-board X-band transmitter, an on-board dual circularly polarized-wave antenna, and a ground station. In the on-board transmitter, we optimized the bias conditions of GaN High Power Amplifier (HPA) to linearize AM-AM performance. We have also designed and fabricated a dual circularly polarized-wave antenna for low-crosstalk polarization multiplexing. The antenna is composed of a corrugated horn antenna and a septum-type polarizer. The antenna achieves Cross Polarization Discrimination (XPD) of 37-43dB in the target X-band. We also modify an existing 10m ground station antenna by replacing its primary radiator and adding a polarizer. We put the polarizer and Low Noise Amplifiers (LNAs) in a cryogenic chamber to reduce thermal noise. Total system noise temperature of the antenna is 58K (maximum) for 18K physical temperature when the angle of elevation is 90° on a fine winter day. The dual circularly polarized-wave ground station antenna has 39.0dB/K of Gain - system-noise Temperature ratio (G/T) and an XPD higher than 37dB. The downlinked signals are stored in a data recorder at the antenna site. Afterwards, we decoded the signals by using our non-real-time software demodulator. Our system has high frequency efficiency with a roll-off factor α=0.05 and polarization multiplexing of 64APSK. The communication bits per hertz corresponds to 8.41bit/Hz (2.65Gbit/315MHz). The system is demonstrated in orbit on board the RAPid Innovative payload demonstration Satellite (RAPIS-1). RAPIS-1 was launched from Uchinoura Space Center on January 19th, 2019. We decoded 1010 bits of downlinked R- and L-channel signals and found that the downlinked binary data was error free. Consequently, we have achieved 2.65Gbps communication speed in the X-band for earth observation satellites at 300 Mega symbols per second (Msps) and polarization multiplexing of 64APSK (coding rate: 4/5) for right- and left-hand circular polarizations.

  • Compact X-Band Synthetic Aperture Radar for 100kg Class Satellite Open Access

    Hirobumi SAITO  Prilando Rizki AKBAR  Hiromi WATANABE  Vinay RAVINDRA  Jiro HIROKAWA  Kenji URA  Pyne BUDHADITYA  

     
    INVITED PAPER-Sensing

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1653-1660

    We proposed a new architecture of antenna, transmitter and receiver feeding configuration for small synthetic aperture radar (SAR) that is compatible with 100kg class satellite. Promising applications are constellations of earth observations together with optical sensors, and responsive, disaster monitoring missions. The SAR antenna is a deployable, passive, honeycomb panel antenna with slot array that can be stowed compactly. RF (radio frequency) instruments are in a satellite body and RF signal is fed to a deployable antenna through non-contacting choke flanges at deployable hinges. This paper describes its development strategy and the present development status of the small spaceborne SAR based on this architecture.

  • A TM010 Cavity Power-Combiner with Microstrip Line Inputs

    Vinay RAVINDRA  Hirobumi SAITO  Jiro HIROKAWA  Miao ZHANG  Atsushi TOMIKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1087-1096

    A TM010 cavity power combiner is presented, which achieves direct interface to microstrip lines via magnetic field coupling. A prototype is fabricated and its S-matrix measured. From the S-parameters we calculate that it shows less than 0.85 dB insertion loss over 250 MHz bandwidth at X-band. The return power to the input ports is less than -15 dB over this bandwidth. We verify the insertion loss estimation using S-matrix, by measuring transmission S-parameter of a concatenated 2-port divider-combiner network. Similarly analyzed is the case of performance of power combiner when one of the input fails. We find that we can achieve graceful degradation provided we ensure some particular reflection phase at the degraded port.