1-3hit |
Kohji KANAMORI Yosiaki S. HISAMUNE Taishi KUBOTA Yoshiyuki SUZUKI Masaru TSUKIJI Eiji HASEGAWA Akihiko ISHITANI Takeshi OKAZAWA
A contact-less cell with high capacitive-coupling ratio (HiCR) of 0.8, which is programmed and erased by Fowler-Nordheim (F-N) tunneling, has been developed for single 3 V power-supply 64 Mbit and future flash memories. A 1.50 µm2 cell area is obtained by using 0.4 µm technology. The HiCR cell structure is realized by 1) self-aligned definition of small tunneling regions underneath the floating-gate side wall and 2) an advanced rapid thermal process for 7.5 nm-thick tunnel-oxynitride. The internal-voltages used for PROGRAM and ERASE are8 V and 12 V, respectively. The use of low positive internal-voltages results in reducing total process step numbers compared with reported memory cells. The HiCR cell also realizes low power and fast random access with a single 3 V power-supply.
Yoshiyuki SUZUKI Takehiko KOBAYASHI
Short-range propagation measurements were carried out using ultra wideband (UWB) and continuous wave (CW) signals on a rectangular aluminum conductive plate, simulating typical office desks, with and without a low vertical metal partition panels. The frequency of the UWB signal spanned from 3.1 to 10.6 GHz and that of the CW signal was 6.85 GHz. A vector network analyzer and two omnidirectional UWB antennas were used to obtain the frequency-domain response of the propagation paths. With the partition panel, the CW reception level showed approximately a 20-dB spatial variation, induced by the interference between the direct and the reflected waves, but the UWB reception level had no particular plunges. The additional losses were also measured when the 500-mm propagation path was blocked with a human arm, a coffee cup, and a copy paper pile and when the receiving antenna was covered with a human palm on the plate without the partition panel. The maximum additional propagation losses were found as follows: 10-12 dB by a human arm, 10 dB with a coffee cup, and 2 dB with a paper pile. Further additional loss caused by a palm covering the antenna was found to be 10 to 12 dB, mainly due to palm absorption.
Kazumasa KOBAYASHI Yoshiyuki SUZUKI Masahide ABE
A new configuration is proposed for adaptive Rank Order Filters ('AROF') which adaptively extract the 'optimal rank'. The optimal rank is determined using the 'noise elimination efficiency' of ROF. The simulated results show that the AROF is more effective than the conventional rank-fixed ROFs at eliminating impulse noise.