1-2hit |
Takumi NISHIME Hiroshi HASHIGUCHI Naobumi MICHISHITA Hisashi MORISHITA
Platform-mounted small antennas increase dielectric loss and conductive loss and decrease the radiation efficiency. This paper proposes a novel antenna design method to improve radiation efficiency for platform-mounted small antennas by characteristic mode analysis. The proposed method uses mapping of modal weighting coefficient (MWC) and infinitesimal dipole and evaluate the metal casing with 100mm × 55mm × 23mm as a platform excited by an inverted-F antenna. The simulation and measurement results show that the radiation efficiency of 5% is improved with the whole system from 2.5% of the single antenna.
Hiroshi HASHIGUCHI Takumi NISHIME Naobumi MICHISHITA Hisashi MORISHITA Hiromi MATSUNO Takuya OHTO Masayuki NAKANO
This paper presents dual bands and dual polarization reflectarrays for 5G millimeter wave applications. The frequency bands of 28GHz and 39GHz are allocated for 5G to realize high speed data transmission. However, these high frequency bands create coverage holes in which no link between base station and receivers is possible. Reflectarray has gained attention for reducing the size and number of coverage holes. This paper proposes a unit cell with swastika and the patch structure to construct the dual bands reflectrray operating at 28GHz and 39GHz by supercell. This paper also presents the detailed design procedure of the dual-bands reflectarray by supercell. The reflectarray is experimentally validated by a bistatic radar cross section measurement system. The experimental results are compared with simulation and reflection angle agreement is observed.