The search functionality is under construction.

Author Search Result

[Author] Hisashi MORISHITA(34hit)

1-20hit(34hit)

  • A Study of Impedance Switched Folded Monopole Antenna with Robustness to Metal for Installation on Metal Walls

    Yuta NAKAGAWA  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    732-739

    In order to achieve an antenna with robustness to metal for closed space wireless communications, two types of the folded monopole antenna with different input impedance have been studied. In this study, we propose the folded monopole antenna, which can switch the input impedance by a simple method. Both simulated and measured results show that the proposed antenna can improve robustness to the proximity of the metal.

  • Design of a Mode Converter for Quasi-Optical Amplifiers by Using 3D EM Simulation Software

    Toshihisa KAMEI  Hisashi MORISHITA  Chun-Tung CHEUNG  David B. RUTLEDGE  

     
    PAPER-Applications of Electromagnetics Simulators

      Vol:
    E84-C No:7
      Page(s):
    955-960

    As the capacity of the personal computer and workstation increase rapidly, many electromagnetic simulators are widely used. In this paper, Ansoft's High Frequency Structure Simulator (HFSS), which is a commercial software product, is applied to design a mode converter operating at 35 GHz is fabricated based on the simulation results. The numerical results are in good agreement with the measured data.

  • Dual Bands and Dual Polarization Reflectarray for Millimeter Wave Application by Supercell Structure

    Hiroshi HASHIGUCHI  Takumi NISHIME  Naobumi MICHISHITA  Hisashi MORISHITA  Hiromi MATSUNO  Takuya OHTO  Masayuki NAKANO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    241-249

    This paper presents dual bands and dual polarization reflectarrays for 5G millimeter wave applications. The frequency bands of 28GHz and 39GHz are allocated for 5G to realize high speed data transmission. However, these high frequency bands create coverage holes in which no link between base station and receivers is possible. Reflectarray has gained attention for reducing the size and number of coverage holes. This paper proposes a unit cell with swastika and the patch structure to construct the dual bands reflectrray operating at 28GHz and 39GHz by supercell. This paper also presents the detailed design procedure of the dual-bands reflectarray by supercell. The reflectarray is experimentally validated by a bistatic radar cross section measurement system. The experimental results are compared with simulation and reflection angle agreement is observed.

  • Decoupling Method for Four Closely Spaced Planar Inverted-F Antennas Using Parasitic Elements and Bridge Lines

    Quang Quan PHUNG  Tuan Hung NGUYEN  Naobumi MICHISHITA  Hiroshi SATO  Yoshio KOYANAGI  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/05/23
      Vol:
    E106-B No:11
      Page(s):
    1154-1164

    This study proposed a novel decoupling method for four planar inverted-F antennas (PIFAs) operating at 2.0GHz (f0). The edge-to-edge and center-to-center spacings of the adjacent PIFAs are extremely small (0.05λ0 and 0.17λ0, respectively), resulting in strong mutual coupling among them. In our previous study, we proposed a structure consisting of parasitic elements (PEs) and a bridge line (BL) for the decoupling of two PIFAs. One attractive feature of the proposed method is that no adjustment of the original structure and size of the PIFAs is necessary. However, as the number of PIFAs increases to four, their decoupling becomes considerably more complicated, and impedance mismatch is also an issue to be considered. Therefore, in this study, PEs and BLs are functionally developed to simultaneously achieve low mutual coupling and improved impedance matching of the four PIFAs. The simulated results showed that loading the proposed PEs and BLs onto the four PIFAs could reduce as well as maintain all mutual coupling for less than -10dB, and simultaneously improve impedance matching. Therefore, the total antenna efficiency at 2.0GHz could be significantly improved from 64.2% to 84.8% for PIFA1 and PIFA4, and from 35.9% to 74.2% for PIFA2 and PIFA3. Four PIFAs with PEs and BLs were fabricated and measured to validate the simulation results.

  • A Study on Decoupling Method for Two PIFAs Using Parasitic Elements and Bridge Line

    Quang Quan PHUNG  Tuan Hung NGUYEN  Naobumi MICHISHITA  Hiroshi SATO  Yoshio KOYANAGI  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/12/22
      Vol:
    E104-B No:6
      Page(s):
    630-638

    In this study, a novel decoupling method using parasitic elements (PEs) connected by a bridge line (BL) for two planar inverted-F antennas (PIFAs) is proposed. The proposed method is developed from a well-known decoupling method that uses a BL to directly connect antenna elements. When antenna elements are connected directly by a BL, strong mutual coupling can be reduced, but the resonant frequency shifts to a different frequency. Hence, to shift the resonant frequency toward the desired frequency, the original size of the antenna elements must be adjusted. This is disadvantageous if the method is applied in cases where the design conditions render it difficult to connect the antennas directly or adjust the original antenna size. Therefore, to easily reduce mutual coupling in such a case, a decoupling method that does not require both connecting antennas directly and adjusting the original antenna size is necessitated. This study demonstrates that using PEs connected by a BL reduces the mutual coupling from -6.6 to -14.1dB, and that the resonant frequency is maintained at the desired frequency (2.0GHz) without having to adjust the original PIFAs size. In addition, impedance matching can be adjusted to the desired frequency, resulting in an improved total antenna efficiency from 77.4% to 94.6%. This method is expected to be a simple and effective approach for reducing the mutual coupling between larger numbers of PIFA elements in the future.

  • Downsized Bow-Tie Antenna with Folded Elements

    Mio NAGATOSHI  Shingo TANAKA  Satoru HORIUCHI  Hisashi MORISHITA  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1098-1104

    It has been reported that by adding two folded elements, bow-tie antenna can be miniaturized, but the antenna has VSWR degradation problem. In this paper, the details of the VSWR degradation are investigated and the physical mechanism of the degradation is clarified. The best position for folded element is also shown. Moreover, the bow-tie antenna is bent in half in order to realize more size reduction. When the two folded elements are added to the half bent bow-tie antenna, the lowest operation frequency goes down and the proposed antenna can be more downsized than the previous proposed antenna. The gain is slightly lower than that of the previous model, however, the antenna area is reduced from 31%, which is the antenna area ratio of privious proposed antenna and conventional bow-tie antenna, to 19%. The bandwidth of 92% is obtained for VSWR≤2.

  • Coaxially Fed Antenna Composed of Monopole and Choke Structure Using Two Different Configurations of Composite Right/Left-Handed Coaxial Lines

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    205-215

    Two kinds of composite right/left-handed coaxial lines (CRLH CLs) are designed for an antenna element. The dispersion relations of the infinite periodic CRLH CLs are designed to occur -1st resonance at around 700 MHz, respectively. The designed CRLH CLs comprise a monopole and a choke structure for antenna elements. To verify the resonant modes and frequencies, the monopole structure, the choke structure, and the antenna element which is combined the monopole and the choke structures are simulated by eigenmode analysis. The resonant frequencies correspond to the dispersion relations. The monopole and the choke structures are applied to the coaxially fed antenna. The proposed antenna matches at 710 MHz and radiates. At the resonant frequency, the total length of the proposed antenna which is the length of the monopole structure plus the choke structure is 0.12 wavelength. The characteristics of the proposed antenna has been compared with that of the conventional coaxially fed monopole antenna without the choke structure and the sleeve antenna with the quarter-wavelength choke structure. The radiation pattern of the proposed antenna is omnidirectional, the total antenna efficiency is 0.73 at resonant frequencies, and leakage current is suppressed lesser than -10 dB at resonant frequency. The propose antenna is fabricated and measured. The measured |S11| characteristics, radiation patterns, and the total antenna efficiency are in good agreement with the simulated results.

  • Design Optimization of Radar Absorbent Material for Broadband and Continuous Oblique Incidence Characteristics

    Yuka ISHII  Naobumi MICHISHITA  Hisashi MORISHITA  Yuki SATO  Kazuhiro IZUI  Shinji NISHIWAKI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    216-223

    Radar-absorbent materials (RAM) with various characteristics, such as broadband, oblique-incidence, and polarization characteristics, have been developed according to applications in recent years. This paper presents the optimized design method of two flat layers RAM with both broadband and oblique-incidence characteristics for the required RAM performance. The oblique-incidence characteristics mean that the RAM is possible to absorb radio waves continuously up to the maximum incidence angle. The index of the wave-absorption amount is 20dB, corresponding to an absorption rate of 99%. Because determination of the electrical material constant of each layer is the most important task with respect to the received frequency and the incidence angle, we optimized the values by using Non-dominated sorting genetic algorithm-II (NSGA-II). Two types of flat-layer RAM composed of dielectric and magnetic materials were designed and their characteristics were evaluated. Consequently, it was confirmed that oblique-incidence characteristics were better for the RAM composed of dielectric materials. The dielectric RAM achieved an incidence angle of up to 60° with broadband characteristics and a relative bandwidth of 77.01% at the transverse-magnetic (TM) wave incidence. In addition, the magnetic RAM could lower the minimum frequency of the system more than the dielectric RAM. The minimum frequency of the magnetic RAM was 1.38GHz with a relative bandwidth of 174.18% at TM-wave incidence and an incidence angle of 45°. We confirmed that it is possible to design RAM with broadband characteristics and continuous oblique-incidence characteristics by using the proposed method.

  • Detection Performance Analysis of Distributed-Processing Multistatic Radar System with Different Multivariate Dependence Models in Local Decisions

    Van Hung PHAM  Tuan Hung NGUYEN  Hisashi MORISHITA  

     
    PAPER-Sensing

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1097-1104

    In a previous study, we proposed a new method based on copula theory to evaluate the detection performance of distributed-processing multistatic radar systems, in which the dependence of local decisions was modeled by a Gaussian copula with linear dependence and no tail dependence. However, we also noted that one main limitation of the study was the lack of investigations on the tail-dependence and nonlinear dependence among local detectors' inputs whose densities have long tails and are often used to model clutter and wanted signals in high-resolution radars. In this work, we attempt to overcome this shortcoming by extending the application of the proposed method to several types of multivariate copula-based dependence models to clarify the effects of tail-dependence and different dependence models on the system detection performance in detail. Our careful analysis provides two interesting and important clarifications: first, the detection performance degrades significantly with tail dependence; and second, this degradation mainly originates from the upper tail dependence, while the lower tail and nonlinear dependence unexpectedly improve the system performance.

  • Compact Built-In Handset MIMO Antenna Using L-Shaped Folded Monopole Antennas

    Yongho KIM  Toshiteru HAYASHI  Yoshio KOYANAGI  Hisashi MORISHITA  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1743-1751

    A compact built-in handset antenna for multiple-input multiple-output (MIMO) system at 2 GHz, comprising two elements array of newly proposed L-shaped folded monopole antenna (LFMA), is evaluated under the multipath radio wave propagation environments. By analyzing the fundamental characteristics, mean effective gain (MEG), correlation, and channel capacity, the significant enhancement in the capability, as a handset MIMO antenna under practical use conditions, was confirmed. The performances were also compared to those of an array antenna comprising two planar inversed-F antenna (PIFA) elements in order to verify the effectiveness of the proposed antenna. The results show that the equivalent or improved performances can be realized, by using the proposed LFMA array with a compact size, taking only the volume of 44% of a PIFA array. The LFMA array provides almost the same bandwidth and enhanced isolation compared with a PIFA array, and the sufficiently low correlation and acceptable effective gain are obtained under the multipath radio wave propagation environments. In addition, a greater channel capacity than a PIFA array is achieved especially when the proposed LFMA array is inclined for the display-viewing mode, and moreover, an almost doubled increase in the channel capacity is obtained by using MIMO transmission compared with single-input single-output (SISO). This study also show that the MEG has much effects on the channel capacity, rather than the correlations, for the proposed antenna.

  • Broadband Sleeve Dipole Antenna with Consistent Gain in the Horizontal Direction

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/06
      Vol:
    E101-B No:4
      Page(s):
    1061-1068

    This paper improves radiation patterns and impedance matching of a broadband sleeve dipole antenna. A broadband sleeve dipole antenna is designed and the effect of the structure parameters on the |S11| characteristics is calculated. Current distributions of the resonance frequencies are calculated. A broadband sleeve dipole antenna with plate element is proposed. Better impedance matching is obtained by adjusting the size of the plate element. The nulls of the radiation patterns are reduced at high frequencies and the gain in the horizontal direction is improved.

  • Low-Profile and Small Monocone Antenna Composed of a Circular Plate and Three Oblique Short Elements

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    740-747

    A monocone antenna is a type of monopole antenna with wideband characteristics. In this paper, a low-profile and small monocone antenna is proposed, by loading a circular plate and three oblique short elements. The characteristics of the proposed antenna are analyzed via simulation. Consequently, a low-profile and small monocone antenna can be obtained while maintaining the wideband characteristics. The relative bandwidth of the proposed antenna (voltage standing wave ratio (VSWR) ≤ 2) is greater than 158.9%. The frequency band of digital terrestrial television broadcasting and the mobile communication systems (from 470 to 3600MHz) in Japan can be completely covered with VSWR ≤ 2. In addition, the radiation patterns of the proposed antenna are omni-directional. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.

  • Analysis of Handset Antennas in the Vicinity of the Human Body by the Electromagnetic Simulator

    Hisashi MORISHITA  Yongho KIM  Kyohei FUJIMOTO  

     
    PAPER-Applications of Electromagnetics Simulators

      Vol:
    E84-C No:7
      Page(s):
    937-947

    As the capacity of a personal computer and workstation increases rapidly, many electromagnetic simulators solving antenna problems are widely used. In this paper, the IE3D electromagnetic simulator, which is a commercial software product, is applied to the analysis of handset antennas in the vicinity of the human body. Firstly, basic characteristics of popular handset antennas such as whip and planar inverted-F antennas are obtained by the IE3D electromagnetic simulator and calculated results are compared with measured results quoted from the referenced paper. Secondly, on the basis of newly considered design concept for a handset antenna, a loop antenna system for the handset, which we have proposed in order to reduce the influence of human body, is taken as an example of a balance-fed antenna and is analyzed theoretically and experimentally including the influence of the human body. In a result, calculated results by the IE3D electromagnetic simulator are in good agreement with measured results and it is confirmed that the simulator is very effective in analyzing the handset antenna in the vicinity of the human body.

  • A Balance-Fed Loop Antenna System for Handset

    Hisashi MORISHITA  Hiroki FURUUCHI  Harushige IDE  Zengo TANAKA  Kyohei FUJIMOTO  

     
    PAPER

      Vol:
    E82-A No:7
      Page(s):
    1138-1143

    In the conventional antenna system for the handset, some gain degradation has been observed when an operator holds the handset. This is caused by the variation of the current on the conducting box used in the handset due to the body effect. This paper presents (1) design concept of antenna for the handset and (2) analysis of a newly proposed loop antenna system, which has the balance structure for the antenna feed to reduce the effect of currents on the conducting box. In order to confirm the effectiveness of using the balance-fed loop antenna, a simple model using a small loop antenna mounted on a ground plane is analyzed. The current distribution for the balance-fed loop antenna system is obtained calculatedly and also experimentally and is compared with that for the unbalance-fed loop antenna system. In a result, remarkable decrease in the current distribution on the ground plane for the case of the balance-fed antennas system is shown. Calculated results are in good agreement with measured results.

  • Circularly-Polarized Cavity-Backed Annular Slot Antenna with One Point Shorted

    Hisashi MORISHITA  Kazuhiro HIRASAWA  Kyohei FUJIMOTO  

     
    LETTER-Antennas and Propagation

      Vol:
    E74-B No:12
      Page(s):
    4096-4098

    Characteristics of a cavity-backed annular slot antenna with one point shorted are investigated. Resonance frequencies, bandwidths and radiation patterns with respect to a slot width and a slot shorting position are studied experimentally. By selecting a slot shorting position, the bandwidth of more than 10% for the input impedance and circular polarization of the bandwidth of about 3.2% for the axial ratio are obtained.

  • The Mutual Coupling Reduction between Two J-Shaped Folded Monopole Antennas for Handset

    Jun ITOH  Nguyen TUAN HUNG  Hisashi MORISHITA  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1161-1167

    In this study, we propose a method to reduce the mutual coupling between two J-shaped folded monopole antennas (JFMAs), which cover the IEEE 802.11 b/g (2400-2484 MHz) band. First, the change in mutual coupling with the spacing between the two antenna elements is investigated by considering two feeding models, and the effects of changes in the coupling on the antenna efficiency are studied. Subsequently, we try the method to reduce mutual coupling, the method involves the use of a bridge line that links the two antennas. The mutual coupling can be significantly reduced and the total antenna efficiency can be improved by linking two shorting strips with the bridge line. In a past study, we had found that in the case of L-shaped folded monopole antennas (LFMAs), the mutual coupling and antenna efficiency vary with the linking location on the bridge line. Moreover, we compare the characteristics of the LFMA and JFMA and show that the JFMA is effective when miniaturized.

  • A Circularly Polarized Broadband Rhombic Loop Antenna

    Hisashi MORISHITA  Kazuhiro HIRASAWA  Tsukasa NAGAO  

     
    PAPER-Antennas and Propagation

      Vol:
    E79-B No:6
      Page(s):
    865-870

    A broadband rhombic loop antenna is introduced to radiate a circularly polarized wave. This antenna has a single feed and is located above a ground plane. The perimeter of the loop is typically about 1.3 wavelength. One gap is made on the loop to produce a traveling wave distribution of current. Antenna characteristics are calculated by the method of moments and compared with the measured data. By adjusting a perimeter and a gap position of the loop, circular polarization is obtained. In addition, with the appropriate vertex angle of the rhombus, the bandwidth of about 20% for the axial ratio (2dB) is attained and the possibility of controlling the input impedance is found. Finally, it is observed that sense of circular polarization can be changed easily from left-hand to right-hand, and vice versa by switching one gap position to the other on the rhombic loop.

  • Monocone Antenna with Short Elements on Wideband Choke Structure Using Composite Right/Left-Handed Coaxial Line

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1408-1418

    The composite right/left-handed (CRLH) coaxial line (CL) with wideband electromagnetic band gap (EBG) is applied to the wideband choke structure for a monocone antenna with short elements, and the resulting characteristics are considered. In the proposed antenna, impedance matching and leakage current suppression can be achieved across a wideband off. The lowest frequency (|S11| ≤ -10dB) of the proposed antenna is about the same as that of the monocone antenna on an infinite ground plane. In addition, the radiation patterns of the proposed antenna are close to the figure of eight in wideband. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.

  • Dual-Polarized Metasurface Using Multi-Layer Ceramic Capacitors for Radar Cross Section Reduction

    Thanh-Binh NGUYEN  Naoyuki KINAI  Naobumi MICHISHITA  Hisashi MORISHITA  Teruki MIYAZAKI  Masato TADOKORO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/02/18
      Vol:
    E103-B No:8
      Page(s):
    852-859

    This paper proposes a dual-polarized metasurface that utilizes multi-layer ceramic capacitors (MLCCs) for radar cross-section (RCS) reduction in the 28GHz band of the quasi-millimeter band. MLCCs are very small in size; therefore, miniaturization of the unit cell structure of the metamaterial can be expected, and the MLCCs can be periodically loaded onto a narrow object. First, the MLCC structure was modeled as a basic structure, and the effective permeability of the MLCC was determined to investigate the influence of the arrangement direction on MLCC interaction. Next, the unit cell structure of the dual-polarized metasurface was designed for an MLCC set on a dielectric substrate. By analyzing the infinite periodic structure and finite structure, the monostatic reduction characteristics, oblique incidence characteristics, and dual-polarization characteristics of the proposed metasurface were evaluated. In the case of the MLCCs arranged in the same direction, the monostatic RCS reduction was approximately 30dB at 29.8GHz, and decreased when the MLCCs were arranged in a checkerboard pattern. The monostatic RCS reductions for the 5 × 5, 10 × 10, and 20 × 20 divisions were roughly the same, i.e., 10.8, 9.9, and 10.3dB, respectively. Additionally, to validate the simulated results, the proposed dual-polarized metasurface was fabricated and measured. The measured results were found to approximately agree with the simulated results, confirming that the RCS can be reduced for dual-polarization operation.

  • Low-Profile of Monocone Antenna by Using Planar Inverted-F Antenna Structure

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2260-2266

    The monocone antenna is a type of monopole antenna that has wideband characteristics. This paper proposes a low-profile monocone antenna with a planar inverted-F structure. The characteristics of the proposed antenna are analyzed through a simulation. The results demonstrate that the low-profile antenna offers wideband performance, and the relative bandwidth of VSWR ≤ 2 is found to be more than 190%. In addition, miniaturization of the monocone antenna is elucidated. The proposed antenna is prototyped, and the validity of the simulation is verified through measurements.

1-20hit(34hit)