The search functionality is under construction.

Author Search Result

[Author] Hiroshi INAMURA(2hit)

1-2hit
  • Low-Power Driving Technique for 1-Pixel Display Using an External Capacitor Open Access

    Hiroyuki MANABE  Munekazu DATE  Hideaki TAKADA  Hiroshi INAMURA  

     
    INVITED PAPER

      Vol:
    E98-C No:11
      Page(s):
    1015-1022

    Liquid crystal displays (LCDs) are suitable as elements underlying wearable and ubiquitous computing thanks to their low power consumption. A technique that uses less power to drive 1-pixel LCDs is proposed. It harvests the charges on the LCD and stores them in an external capacitor for reuse when the polarity changes. A simulation shows that the charge reduction depends on the ratio of the capacitance of the external capacitor to that of the LCD and can reach 50%. An experiment on a prototype demonstrates an almost 30% reduction with large 1-pixel LCDs. With a small 10 × 10mm2 LCD, the overhead of the micro-controller matches the reduction so no improvement could be measured. Though the technique requires longer time for polarity reversal, we confirm that it does not significantly degrade visual quality.

  • Evolution Trends of Wireless MIMO Channel Modeling towards IMT-Advanced Open Access

    Chia-Chin CHONG  Fujio WATANABE  Koshiro KITAO  Tetsuro IMAI  Hiroshi INAMURA  

     
    INVITED SURVEY PAPER

      Vol:
    E92-B No:9
      Page(s):
    2773-2788

    This paper describes an evolution and standardization trends of the wireless channel modeling activities towards IMT-Advanced. After a background survey on various channel modeling approaches is introduced, two well-known multiple-input-multiple-output (MIMO) channel models for cellular systems, namely, the 3GPP/3GPP2 Spatial Channel Model (SCM) and the IMT-Advanced MIMO Channel Model (IMT-Adv MCM) are compared, and their main similarities are pointed out. The performance of MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. Here, we investigate the spatial-temporal correlation characteristics of the 3GPP/3GPP2 SCM and the IMT-Adv MCM in term of their spatial multiplexing and spatial diversity gains. The main goals of this paper are to summarize the current state of the art, as well as to point out the gaps in the wireless channel modeling works, and thus hopefully to stimulate research in these areas.