1-3hit |
Houari SABIRIN Hiroshi SANKOH Sei NAITO
The problem of identifying moving objects in a video recording produced by a range sensor camera is due to the limited information available for classifying different objects. On the other hand, the infrared signal from a range sensor camera is more robust for extreme luminance intensity when the monitored area has light conditions that are too bright or too dark. This paper proposes a method of detection and tracking moving objects in image sequences captured by stationary range sensor cameras. Here, the depth information is utilized to correctly identify each of detected objects. Firstly, camera calibration and background subtraction are performed to separate the background from the moving objects. Next, a 2D projection mapping is performed to obtain the location and contour of the objects in the 2D plane. Based on this information, graph matching is performed based on features extracted from the 2D data, namely object position, size and the behavior of the objects. By observing the changes in the number of objects and the objects' position relative to each other, similarity matching is performed to track the objects in the temporal domain. Experimental results show that by using similarity matching, object identification can be correctly achieved even during occlusion.
Keisuke NONAKA Houari SABIRIN Jun CHEN Hiroshi SANKOH Sei NAITO
A free-viewpoint application has been developed that yields an immersive user experience. One of the simple free-viewpoint approaches called “billboard methods” is suitable for displaying a synthesized 3D view in a mobile device, but it suffers from the limitation that a billboard should be positioned in only one position in the world. This fact gives users an unacceptable impression in the case where an object being shot is situated at multiple points. To solve this problem, we propose optimal deformation of the billboard. The deformation is designed as a mapping of grid points in the input billboard silhouette to produce an optimal silhouette from an accurate voxel model of the object. We formulate and solve this procedure as a nonlinear optimization problem based on a grid-point constraint and some a priori information. Our results show that the proposed method generates a synthesized virtual image having a natural appearance and better objective score in terms of the silhouette and structural similarity.
Houari SABIRIN Hiroshi SANKOH Sei NAITO
This paper presents an automatic method to track soccer players in soccer video recorded from a single camera where the occurrence of pan-tilt-zoom can take place. The automatic object tracking is intended to support texture extraction in a free viewpoint video authoring application for soccer video. To ensure that the identity of the tracked object can be correctly obtained, background segmentation is performed and automatically removes commercial billboards whenever it overlaps with the soccer player. Next, object tracking is performed by an attribute matching algorithm for all objects in the temporal domain to find and maintain the correlation of the detected objects. The attribute matching process finds the best match between two objects in different frames according to their pre-determined attributes: position, size, dominant color and motion information. Utilizing these attributes, the experimental results show that the tracking process can handle occlusion problems such as occlusion involving more than three objects and occluded objects with similar color and moving direction, as well as correctly identify objects in the presence of camera movements.