The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiroya SANO(2hit)

1-2hit
  • Prediction of Peak Frequencies on Electromagnetic Emission from a Signal Line on a Printed Circuit Board

    Takuya MIYASHITA  Osami WADA  Ryuji KOGA  Hiroya SANO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    181-187

    Concerned is a spectral profile of electromagnetic (EM) emission from a signal line on a high-speed digital circuit. The authors have proposed and examined an a priori method to predict the peak frequencies on spectral profile of EM emission from printed circuit boards (PCBs). Profile of an EM spectrum is determined by the resonance of digital circuits. It is the purpose of this paper to investigate the parameters that determine the spectral profile of EM emission from a signal line on a PCS. In this paper, measurements and calculations of EM spectra were carried out for different load capacitances. EM emissions were measured with a small loop antenna at a 50mm from the surface of the PCB. Measured EM spectra had two peaks. Calculated EM spectra, which was based on transient current given by the analog simulator SPICE, had two peaks too. Results of calculations of EM spectra for different internal capacitances of an IC tell that lower peak frequency is determined by the resonance frequency of the resonant loop which is composed of an IC package and a decoupling capacitor. Comparison with measured EM spectra and calculated EM spectra for different load resistances tell that sharpness of the other peak depends on Q factor of a resonant loop which includes a signal line. Therefore the peak frequencies of EM emission spectrum can be predicted as two resonance frequencies of two resonant circuits.

  • Power-Sum Estimation of Electromagnetic Noise Radiated from High-Speed CMOS Printed Circuit Boards

    Osami WADA  Megumi KOSAKA  Hidemi OKA  Ryuji KOGA  Hiroya SANO  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    165-173

    A new approach is proposed to evaluate total electromagnetic noise radiated from a printed circuit board (PCB), and a result of experimental verification is given. The purpose is to represent the total radiation noise by summing up noises from elemental sources on a PCB, such as signal traces or ICs. Each of the elemental noise is calculated by an a priori noise model for each component of a PCB. Parameters of each noise model should be determined experimentally. Radiation sources on a digital PCB were found to be not only signal traces between ICs, but also package-side loops each of which is composed of an IC and a decoupling capacitor. Radiation noises from these two kinds of sources were evaluated separately. Experimental PCBs, which are two-layer PCBs mounting a few high-speed CMOS (HC) ICs, were prepared and radiation power from them was measured. Each PCB has a ground plane on one side, which simulates an internal ground plane in a multilayer PCB, and signal traces on it have a configuration of a microstrip transmission line. Electromagnetic noise caused by a high-speed CMOS gate is radiated impulsively during transition time as short as about 10ns. No significant interference was found between the noises from separate traces because each of the noise is impulsive and rarely overlaps each other. It is concluded that the total radiated power is represented by a simple sum of radiations from each traces without any interference to be taken into account.