The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ryuji KOGA(16hit)

1-16hit
  • Prediction of Far-Field EMI Spectrum of Differential Mode Emission from a Digital PCB by Near-Field Measurement

    Makoto TORIGOE  Takuya MIYASHITA  Osami WADA  Ryuji KOGA  Tetsushi WATANABE  

     
    PAPER

      Vol:
    E80-B No:11
      Page(s):
    1633-1638

    The purpose of this report is to predict far-field EMI spectrum emitted from a signal line on a digital PCB based on near-field EMI measurement. The relation between near magnetic field and far electric field is shown. A method of predicting far electric field from near magnetic field is proposed. Current flowing along a signal line is calculated from measured near magnetic field. Far electric field is estimated from the current. Measurement and prediction of EM emission are carried out using a simple PCB. The result of prediction and measurement of far-field EMI spectrum coincide within the error of 3 dB.

  • Calculation of Common-Mode Radiation from Single-Channel Differential Signaling System Using Imbalance Difference Model

    Tohlu MATSUSHIMA  Tetsushi WATANABE  Yoshitaka TOYOTA  Ryuji KOGA  Osami WADA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1739-1745

    In a differential transmission line, a large common-mode radiation is excited due to its asymmetry. In this paper, the imbalance difference model, which was proposed by the authors for estimation of common-mode radiation, is extended to apply to the differential signaling systems. The authors focus on a differential transmission line with asymmetric property, which consists of an adjacent return plane and two signal lines which are placed close to an edge of the return plane. Three orthogonal transmission modes, a normal mode, a primary common mode and a secondary common mode, are defined. Among these transmission modes, the secondary common mode is dominant in radiation, and a mechanism of the secondary common-mode generation is explained. The radiated emission which was calculated using the imbalance difference model was in good agreement with that obtained by full wave calculation.

  • Suppression of Guard-Trace Resonance by Matched Termination for Reducing Common-Mode Radiation

    Tetsushi WATANABE  Tohlu MATSUSHIMA  Yoshitaka TOYOTA  Osami WADA  Ryuji KOGA  

     
    PAPER-PCB and Circuit Design for EMI Control

      Vol:
    E93-B No:7
      Page(s):
    1746-1753

    We propose a novel technique of matching at both ends of the guard trace to suppress resonance. This approach is derived from the viewpoint that the guard trace acts as a transmission line. We examined that matched termination suppresses guard-trace resonance through simulating a circuit and measuring radiation. We found from these results that the proposed method enables guard-trace voltages to remain low and hence avoids increases in radiation. In addition, we demonstrated that "matched termination at the far end of the guard trace" could suppress guard-trace resonance sufficiently at all frequencies. We eventually found that at least two vias at both ends of the guard trace and only one matching resistor at the far end could suppress guard-trace resonance. With respect to fewer vias, the method we propose has the advantage of reducing restrictions in the printed circuit board layout at the design stage.

  • Common-Mode-Current Generation Caused by Difference of Unbalance of Transmission Lines on a Printed Circuit Board with Narrow Ground Pattern

    Tetsushi WATANABE  Osami WADA  Takuya MIYASHITA  Ryuji KOGA  

     
    PAPER-EMC Design of PCB

      Vol:
    E83-B No:3
      Page(s):
    593-599

    This paper explains a mechanism of common-mode generation on a printed circuit board with a narrow ground pattern. A transmission line has its value of degree of unbalance. At a connection point of two transmission lines having different degrees of unbalance, common mode voltage is generated proportional to the difference, and it drives common mode current. The authors propose a method to evaluate common mode current distribution and verify it by measurement. Although calculated common mode current is larger than measured one by a few dBs, both of them are proportional to the degree of unbalance. An EMI reduction technique, 'unbalance matching,' is also proposed.

  • Power Current Model of LSI/IC Containing Equivalent Internal Impedance for EMI Analysis of Digital Circuits

    Yukihiro FUKUMOTO  Yasuo TAKAHATA  Osami WADA  Yoshitaka TOYOTA  Takuya MIYASHITA  Ryuji KOGA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E84-B No:11
      Page(s):
    3041-3049

    This paper investigates a device model of the power current used for an LSI/IC. The model is proposed to analyze the power bus noise in digital circuit boards. This model is defined in the frequency domain and constructed with an equivalent internal impedance and an equivalent internal current source. Accordingly, the output current of the model is affected by power bus impedance, such as the capacitance of bypass capacitors and the parasitic inductance of power bus wiring. Therefore, the model is useful for analyzing the effectiveness of bypass capacitors and power bus wiring. The structure of equivalent internal impedance for a simple logic IC, such as 74HCXX, can be represented as an RLC series circuit. These parameters are identified by applying the least square method. To demonstrate the validity of the model, an experimental study was conducted. As a result, it was shown that the output current of the model corresponds to the measured current under a variety of power bus impedance levels within 6 dB.

  • A Prediction Method of Common-Mode Excitation on a Printed Circuit Board Having a Signal Trace near the Ground Edge

    Tetsushi WATANABE  Hiroshi FUJIHARA  Osami WADA  Ryuji KOGA  Yoshio KAMI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E87-B No:8
      Page(s):
    2327-2334

    Common-mode excitation caused by an imperfect ground plane on a printed circuit board (PCB) has been conventionally explained with the 'current driven' scheme, in which the common-mode current is driven by the ground voltage across the unintentional inductance of the ground plane. We have developed an alternative method for estimating common-mode excitation that is driven by the difference of the common-mode voltages for two connected transmission lines. A parameter called current division factor (CDF) that represents the degree of imbalance of a transmission line explains the common-mode voltage. In this paper, we calculate the CDF with two-dimensional (2-D) static electric field analysis by using the boundary element method (BEM) for asymmetric transmission lines with an arbitrary cross-section. The proposed 2-D method requires less time than three-dimensional simulations. The EMI increase due to a signal line being close to the edge of the ground pattern was evaluated through CDF calculation. The estimated increase agreed well--within 2 dB--with the measured one.

  • Prediction of Peak Frequencies on Electromagnetic Emission from a Signal Line on a Printed Circuit Board

    Takuya MIYASHITA  Osami WADA  Ryuji KOGA  Hiroya SANO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    181-187

    Concerned is a spectral profile of electromagnetic (EM) emission from a signal line on a high-speed digital circuit. The authors have proposed and examined an a priori method to predict the peak frequencies on spectral profile of EM emission from printed circuit boards (PCBs). Profile of an EM spectrum is determined by the resonance of digital circuits. It is the purpose of this paper to investigate the parameters that determine the spectral profile of EM emission from a signal line on a PCS. In this paper, measurements and calculations of EM spectra were carried out for different load capacitances. EM emissions were measured with a small loop antenna at a 50mm from the surface of the PCB. Measured EM spectra had two peaks. Calculated EM spectra, which was based on transient current given by the analog simulator SPICE, had two peaks too. Results of calculations of EM spectra for different internal capacitances of an IC tell that lower peak frequency is determined by the resonance frequency of the resonant loop which is composed of an IC package and a decoupling capacitor. Comparison with measured EM spectra and calculated EM spectra for different load resistances tell that sharpness of the other peak depends on Q factor of a resonant loop which includes a signal line. Therefore the peak frequencies of EM emission spectrum can be predicted as two resonance frequencies of two resonant circuits.

  • Modeling and Simulation of Via-Connected Power Bus Stacks in Multilayer PCBs

    Zhi Liang WANG  Osami WADA  Takashi HARADA  Takahiro YAGUCHI  Yoshitaka TOYOTA  Ryuji KOGA  

     
    PAPER-Printed Circuit Boards

      Vol:
    E88-B No:8
      Page(s):
    3176-3181

    Power bus noise problem has become a major concern for both EMC engineers and board designers. A fast algorithm, based on the cavity-mode model, was employed for analyzing resonance characteristics of multilayer power bus stacks interconnected by vias. The via is modeled as an inductance and its value is given by a simple expression. Good agreement between the simulated results and measurements demonstrates the effectiveness of the cavity-mode model, together with the via model.

  • Eigenmode Analysis of Whispering Gallery Modes of Pillbox-Type Optical Resonators Utilizing the FE-BPM Formulation

    Anis AHMED  Ryuichi KOYA  Osami WADA  Ming WANG  Ryuji KOGA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E78-C No:11
      Page(s):
    1638-1645

    To evaluate the radial eigenmode field distributions and the resonance wavelengths of axially symmetric pillbox resonator, a numerical method is described which is based on the FE-BPM expression in cylindrical coordinates. Under the weakly guiding approximation, we solve Fresnel equation and can get a fairly accurate result. By using effective index method, 3-D pillbox guiding structure is reduced to 2-D one which is then used for the analysis. One advantage of this method is that it is applicable for the axially symmetric optical waveguides with arbitrary index distribution. The validity of this method is checked by comparing the results of this method with those of the analytical ones. This method is applied for the evaluation of the coupling properties of a coupled structure consisting of a pillbox resonator and a curved waveguide placed outside the pillbox. This coupled structure has a good prospect to be used as optical wavelength filter. By varying the separation distance between the pillbox and the outer curved waveguide, the power transfer due to coupling is determined near the resonance wavelength 0.9 µm.

  • Increase of Common-Mode Radiation due to Guard Trace Voltage and Determination of Effective Via-Location Open Access

    Tohlu MATSUSHIMA  Tetsushi WATANABE  Yoshitaka TOYOTA  Ryuji KOGA  Osami WADA  

     
    PAPER

      Vol:
    E92-B No:6
      Page(s):
    1929-1936

    A guard trace placed near a signal line reduces common-mode radiation from a printed circuit board. The reduction effect is evaluated by the imbalance difference model, which was proposed by the authors, when the guard trace has exactly the same potential as the return plane. However, depending on interval of ground connection of the guard trace, the radiation can increase when the guard trace resonates. In this paper, the authors show that the increase of radiation is caused by the common mode, and extend the imbalance difference model to explain a mechanism of increase of common-mode radiation. Additionally, the effective via location of the guard trace is proposed to reduce the number of vias. The guard trace voltage due to the resonance excites the common mode at the interface where the cross-sectional structure of the transmission line changes since the common-mode excitation is expressed by the product of the voltage and the difference of current division factors. To suppress the common-mode excitation, the guard trace should be grounded at the point where the cross-sectional structure changes. As a result, the common-mode radiation decreases even when the guard trace resonates.

  • Linear Equivalent Circuit of a Digital Gate for Characterization of Malfunction Mechanism

    Naoki KAGAWA  Osami WADA  Ryuji KOGA  

     
    LETTER

      Vol:
    E80-B No:11
      Page(s):
    1652-1653

    Time-related jitters caused by small noise voltage due to electromagnetic noise induce malfunction of digital equipment. The jitters increase with not only magnitude of the noise but also resonance of digital circuits in the equipment. In this report, we proposes a linear equivalent circuit model of a digital CMOS gate for analyzing circuit resonance and verifies the validity of the model.

  • Development of Japanese EMC Engineering in 1996-2009 and Prospects Open Access

    Ryuji KOGA  

     
    INVITED PAPER

      Vol:
    E93-B No:7
      Page(s):
    1664-1669

    Subjects in Electromagnetic Compatibility (EMC) research that have been presented at meetings of the IEICE Technical Committee on Electromagnetic Compatibility (EMCJ) are overviewed and categorized. The temporal changes in the proportions of the categorized subjects among the total number of presentations each year is also shown. Finally, speculative opinions are presented on what EMC subjects will be studied in the near future.

  • FOREWORD Open Access

    Ryuji KOGA  

     
    FOREWORD

      Vol:
    E90-B No:6
      Page(s):
    1297-1297
  • FOREWORD

    Ryuji KOGA  Osami WADA  Yutaka AKIBA  Hiroshi INOUE  Yoshio KAMI  Kohji KOSHIJI  Akihisa SAKURAI  Noboru SCHIBUYA  

     
    FOREWORD

      Vol:
    E80-B No:11
      Page(s):
    1593-1593
  • Evaluation of EMI Reduction Effect of Guard Traces Based on Imbalance Difference Model

    Tohlu MATSUSHIMA  Tetsushi WATANABE  Yoshitaka TOYOTA  Ryuji KOGA  Osami WADA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:6
      Page(s):
    2193-2200

    Placing a guard trace next to a signal line is the conventional technique for reducing the common-mode radiation from a printed circuit board. In this paper, the suppression of common-mode radiation from printed circuit boards having guard traces is estimated and evaluated using the imbalance difference model, which was proposed by the authors. To reduce common-mode radiation further, a procedure for designing a transmission line with guard traces is proposed. Guard traces connected to a return plane through vias are placed near a signal line and they decrease a current division factor (CDF). The CDF represents the degree of imbalance of a transmission line, and a common-mode electromotive force depends on the CDF. Thus, by calculating the CDF, we can estimate the reduction in common-mode radiation. It is reduced not only by placing guard traces, but also by narrowing the signal line to compensate for the variation in characteristic impedance due to the guard traces. Experimental results showed that the maximum reduction in common-mode radiation was about 14 dB achieved by placing guard traces on both sides of the signal line, and the calculated reduction agreed with the measured one within 1 dB. According to the CDF and characteristic impedance calculations, common-mode radiation can be reduced by about 25 dB while keeping the characteristic impedance constant by changing the gap between the signal line and the guard trace and by narrowing the width of the signal line.

  • Power-Sum Estimation of Electromagnetic Noise Radiated from High-Speed CMOS Printed Circuit Boards

    Osami WADA  Megumi KOSAKA  Hidemi OKA  Ryuji KOGA  Hiroya SANO  

     
    PAPER

      Vol:
    E75-B No:3
      Page(s):
    165-173

    A new approach is proposed to evaluate total electromagnetic noise radiated from a printed circuit board (PCB), and a result of experimental verification is given. The purpose is to represent the total radiation noise by summing up noises from elemental sources on a PCB, such as signal traces or ICs. Each of the elemental noise is calculated by an a priori noise model for each component of a PCB. Parameters of each noise model should be determined experimentally. Radiation sources on a digital PCB were found to be not only signal traces between ICs, but also package-side loops each of which is composed of an IC and a decoupling capacitor. Radiation noises from these two kinds of sources were evaluated separately. Experimental PCBs, which are two-layer PCBs mounting a few high-speed CMOS (HC) ICs, were prepared and radiation power from them was measured. Each PCB has a ground plane on one side, which simulates an internal ground plane in a multilayer PCB, and signal traces on it have a configuration of a microstrip transmission line. Electromagnetic noise caused by a high-speed CMOS gate is radiated impulsively during transition time as short as about 10ns. No significant interference was found between the noises from separate traces because each of the noise is impulsive and rarely overlaps each other. It is concluded that the total radiated power is represented by a simple sum of radiations from each traces without any interference to be taken into account.