The search functionality is under construction.

Author Search Result

[Author] Hiroyuki OKUDA(4hit)

1-4hit
  • Identification of Positioning Skill Based on Feedforward/Feedback Switched Dynamical Model

    Hiroyuki OKUDA  Hidenori TAKEUCHI  Shinkichi INAGAKI  Tatsuya SUZUKI  Soichiro HAYAKAWA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2755-2762

    To realize the harmonious cooperation with the operator, the man-machine cooperative system must be designed so as to accommodate with the characteristics of the operator's skill. One of the important considerations in the skill analysis is to investigate the switching mechanism underlying the skill dynamics. On the other hand, the combination of the feedforward and feedback schemes has been proved to work successfully in the modeling of human skill. In this paper, a new stochastic switched skill model for the sliding task, wherein a minimum jerk motion and feedback schemes are embedded in the different discrete states, is proposed. Then, the parameter estimation algorithm for the proposed switched skill model is derived. Finally, some advantages and applications of the proposed model are discussed.

  • Identification of Time-Varying Parameters of Hybrid Dynamical System Models and Its Application to Driving Behavior

    Thomas WILHELEM  Hiroyuki OKUDA  Tatsuya SUZUKI  

     
    PAPER-Systems and Control

      Vol:
    E100-A No:10
      Page(s):
    2095-2105

    This paper presents a novel identification method for hybrid dynamical system models, where parameters have stochastic and time-varying characteristics. The proposed parameter identification scheme is based on a modified implementation of particle filtering, together with a time-smoothing technique. Parameters of the identified model are considered as time-varying random variables. Parameters are identified independently at each time step, using the Bayesian inference implemented as an iterative particle filtering method. Parameters time dynamics are smoothed using a distribution based moving average technique. Modes of the hybrid system model are handled independently, allowing any type of nonlinear piecewise model to be identified. The proposed identification scheme has low computation burden, and it can be implemented for online use. Effectiveness of the scheme is verified by numerical experiments, and an application of the method is proposed: analysis of driving behavior through identified time-varying parameters.

  • Multi-Hierarchical Modeling of Driving Behavior Using Dynamics-Based Mode Segmentation

    Hiroyuki OKUDA  Tatsuya SUZUKI  Ato NAKANO  Shinkichi INAGAKI  Soichiro HAYAKAWA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2763-2771

    This paper presents a new hierarchical mode segmentation of the observed driving behavioral data based on the multi-level abstraction of the underlying dynamics. By synthesizing the ideas of a feature vector definition revealing the dynamical characteristics and an unsupervised clustering technique, the hierarchical mode segmentation is achieved. The identified mode can be regarded as a kind of symbol in the abstract model of the behavior. Second, the grammatical inference technique is introduced to develop the context-dependent grammar of the behavior, i.e., the symbolic dynamics of the human behavior. In addition, the behavior prediction based on the obtained symbolic model is performed. The proposed framework enables us to make a bridge between the signal space and the symbolic space in the understanding of the human behavior.

  • Simultaneous Realization of Decision, Planning and Control for Lane-Changing Behavior Using Nonlinear Model Predictive Control

    Hiroyuki OKUDA  Nobuto SUGIE  Tatsuya SUZUKI  Kentaro HARAGUCHI  Zibo KANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/08/31
      Vol:
    E103-D No:12
      Page(s):
    2632-2642

    Path planning and motion control are fundamental components to realize safe and reliable autonomous driving. The discrimination of the role of these two components, however, is somewhat obscure because of strong mathematical interaction between these two components. This often results in a redundant computation in the implementation. One of attracting idea to overcome this redundancy is a simultaneous path planning and motion control (SPPMC) based on a model predictive control framework. SPPMC finds the optimal control input considering not only the vehicle dynamics but also the various constraints which reflect the physical limitations, safety constraints and so on to achieve the goal of a given behavior. In driving in the real traffic environment, decision making has also strong interaction with planning and control. This is much more emphasized in the case that several tasks are switched in some context to realize higher-level tasks. This paper presents a basic idea to integrate decision making, path planning and motion control which is able to be executed in realtime. In particular, lane-changing behavior together with the decision of its initiation is selected as the target task. The proposed idea is based on the nonlinear model predictive control and appropriate switching of the cost function and constraints in it. As the result, the decision of the initiation, planning, and control of the lane-changing behavior are achieved by solving a single optimization problem under several constraints such as safety. The validity of the proposed method is tested by using a vehicle simulator.