1-2hit |
Daisuke MATSUBARA Hitoshi YABUSAKI Satoru OKAMOTO Naoaki YAMANAKA Tatsuro TAKAHASHI
Machine-to-Machine (M2M) communication is expected to grow in networks of the future, where massive numbers of low cost, low function M2M terminals communicate in many-to-many manner in an extremely mobile and dynamic environment. We propose a network architecture called Data-centric Network (DCN) where communication is done using a data identifier (ID) and the dynamic data registered by mobile terminals can be retrieved by specifying the data ID. DCN mitigates the problems of prior arts, which are large size of routing table and transaction load of name resolution service. DCN introduces concept of route attraction and aggregation in which the related routes are attracted to an aggregation point and aggregated to reduce routing table size, and route optimization in which optimized routes are established routes to reduce access transaction load to the aggregation points. These allow the proposed architecture to deal with ever increasing number of data and terminals with frequent mobility and changes in data.
Daisuke MATSUBARA Hitoshi YABUSAKI Satoru OKAMOTO Naoaki YAMANAKA Tatsuro TAKAHASHI
Information-centric networking (ICN) has been investigated as a new communication model that is optimal for data registration and retrieval. A promising application of ICN is mobile machine-to-machine (M2M) communication in which data are registered by M2M terminals, such as vehicles, and retrieved by other M2M terminals. One of the most difficult challenges with ICN is achieving data mobility in which the data are registered by moving terminals and the location of the data changes constantly. To gain access to moving data, the data retrieval messages must access the routing information, which results in a high volume of message transaction loads of high-tier nodes such as the name resolution nodes. We previously proposed a scheme called data-centric network (DCN), which mitigates this problem by allocating multiple intermediate nodes that act as route aggregation points and by establishing optimized routes. In this paper, we compare the transaction load of DCN with those of conventional ICN schemes using theoretical evaluation based on probability calculation. We also compare the amount of route information and transaction loads using a simulator against binary tree and ISP backbone topologies. From these evaluations, we clarify the characteristics of each ICN scheme in different terminal distribution and communication patterns and show that DCN reduces the transaction loads of high-tier nodes when the terminals are communicating locally.