1-3hit |
Ho-Jin SONG Tae-Woo KIM Seong June JO Chung-Hyun LIM Kyoung-Hwan OH Soo-Ghang IHN Jong-In SONG
A microwave photonic mixer utilizing an InGaAs photoconductor for radio over fiber applications is proposed and fabricated. Static and dynamic characteristics of the fabricated microwave photonic mixer were investigated. The microwave photonic mixer showed an optical bandwidth of approximately 300 MHz and a uniform conversion loss characteristic for the electrical input frequency up to 20 GHz.
Takuro TAJIMA Ho-Jin SONG Makoto YAITA
A 300-GHz hetero-generous package solution with a combination of a polyimide microstrip-to-waveguide transition on low-temperature co-fired ceramic (LTCC) is presented. To assemble three parts — a metal back-short, polyimide transition, and LTCC substrate integrated waveguide (SIW) — a ridged microstructure beside the microstrip probe was implemented to reduce the air gap on the broadwall of a back-short. A back-to-back transition exhibited an insertion loss of 4.4 dB at 300 GHz and 49-GHz bandwidth with less than a 10-dB return loss. By evaluating loss of the microstrip line and SIW, we estimated the loss for a single transition, which was 0.9 dB at 300 GHz. The probe transition with ridged metal successfully suppressed the unwanted dip in transmission characteristics and eased the difficulty in assembly. The compact transition is easy to integrate in an antenna-in-package with an MMIC chip by combining suitable substrate materials for the transition and package.
Simultaneous all-optical frequency up/downconversion technique utilizing a single semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) for full-duplex WDM radio over fiber (RoF) applications is presented. Using this technique, error-free simultaneous upconversion and downconversion of RoF signals with a finite-length single mode fiber were experimentally demonstrated. The results show the potential of the proposed scheme for use in a cost-effective full-duplex WDM RoF link.