The search functionality is under construction.

Author Search Result

[Author] Hongbin SUO(7hit)

1-7hit
  • Using a Kind of Novel Phonotactic Information for SVM Based Speaker Recognition

    Xiang ZHANG  Hongbin SUO  Qingwei ZHAO  Yonghong YAN  

     
    LETTER-Speech and Hearing

      Vol:
    E92-D No:4
      Page(s):
    746-749

    In this letter, we propose a new approach to SVM based speaker recognition, which utilizes a kind of novel phonotactic information as the feature for SVM modeling. Gaussian mixture models (GMMs) have been proven extremely successful for text-independent speaker recognition. The GMM universal background model (UBM) is a speaker-independent model, each component of which can be considered as modeling some underlying phonetic sound classes. We assume that the utterances from different speakers should get different average posterior probabilities on the same Gaussian component of the UBM, and the supervector composed of the average posterior probabilities on all components of the UBM for each utterance should be discriminative. We use these supervectors as the features for SVM based speaker recognition. Experiment results on a NIST SRE 2006 task show that the proposed approach demonstrates comparable performance with the commonly used systems. Fusion results are also presented.

  • Automatic Singing Performance Evaluation for Untrained Singers

    Chuan CAO  Ming LI  Xiao WU  Hongbin SUO  Jian LIU  Yonghong YAN  

     
    LETTER-Music Information Processing

      Vol:
    E92-D No:8
      Page(s):
    1596-1600

    In this letter, we present an automatic approach of objective singing performance evaluation for untrained singers by relating acoustic measurements to perceptual ratings of singing voice quality. Several acoustic parameters and their combination features are investigated to find objective correspondences of the perceptual evaluation criteria. Experimental results show relative strong correlation between perceptual ratings and the combined features and the reliability of the proposed evaluation system is tested to be comparable to human judges.

  • Automatic Language Identification with Discriminative Language Characterization Based on SVM

    Hongbin SUO  Ming LI  Ping LU  Yonghong YAN  

     
    PAPER-Language Identification

      Vol:
    E91-D No:3
      Page(s):
    567-575

    Robust automatic language identification (LID) is the task of identifying the language from a short utterance spoken by an unknown speaker. The mainstream approaches include parallel phone recognition language modeling (PPRLM), support vector machine (SVM) and the general Gaussian mixture models (GMMs). These systems map the cepstral features of spoken utterances into high level scores by classifiers. In this paper, in order to increase the dimension of the score vector and alleviate the inter-speaker variability within the same language, multiple data groups based on supervised speaker clustering are employed to generate the discriminative language characterization score vectors (DLCSV). The back-end SVM classifiers are used to model the probability distribution of each target language in the DLCSV space. Finally, the output scores of back-end classifiers are calibrated by a pair-wise posterior probability estimation (PPPE) algorithm. The proposed language identification frameworks are evaluated on 2003 NIST Language Recognition Evaluation (LRE) databases and the experiments show that the system described in this paper produces comparable results to the existing systems. Especially, the SVM framework achieves an equal error rate (EER) of 4.0% in the 30-second task and outperforms the state-of-art systems by more than 30% relative error reduction. Besides, the performances of proposed PPRLM and GMMs algorithms achieve an EER of 5.1% and 5.0% respectively.

  • Melody Track Selection Using Discriminative Language Model

    Xiao WU  Ming LI  Hongbin SUO  Yonghong YAN  

     
    LETTER-Music Information Processing

      Vol:
    E91-D No:6
      Page(s):
    1838-1840

    In this letter we focus on the task of selecting the melody track from a polyphonic MIDI file. Based on the intuition that music and language are similar in many aspects, we solve the selection problem by introducing an n-gram language model to learn the melody co-occurrence patterns in a statistical manner and determine the melodic degree of a given MIDI track. Furthermore, we propose the idea of using background model and posterior probability criteria to make modeling more discriminative. In the evaluation, the achieved 81.6% correct rate indicates the feasibility of our approach.

  • Robust Speaker Clustering Using Affinity Propagation

    Xiang ZHANG  Ping LU  Hongbin SUO  Qingwei ZHAO  Yonghong YAN  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:11
      Page(s):
    2739-2741

    In this letter, a recently proposed clustering algorithm named affinity propagation is introduced for the task of speaker clustering. This novel algorithm exhibits fast execution speed and finds clusters with low error. However, experiments show that the speaker purity of affinity propagation is not satisfying. Thus, we propose a hybrid approach that combines affinity propagation with agglomerative hierarchical clustering to improve the clustering performance. Experiments show that compared with traditional agglomerative hierarchical clustering, the hybrid method achieves better performance on the test corpora.

  • An LVCSR Based Reading Miscue Detection System Using Knowledge of Reference and Error Patterns

    Changliang LIU  Fuping PAN  Fengpei GE  Bin DONG  Hongbin SUO  Yonghong YAN  

     
    PAPER-Speech and Hearing

      Vol:
    E92-D No:9
      Page(s):
    1716-1724

    This paper describes a reading miscue detection system based on the conventional Large Vocabulary Continuous Speech Recognition (LVCSR) framework [1]. In order to incorporate the knowledge of reference (what the reader ought to read) and some error patterns into the decoding process, two methods are proposed: Dynamic Multiple Pronunciation Incorporation (DMPI) and Dynamic Interpolation of Language Model (DILM). DMPI dynamically adds some pronunciation variations into the search space to predict reading substitutions and insertions. To resolve the conflict between the coverage of error predications and the perplexity of the search space, only the pronunciation variants related to the reference are added. DILM dynamically interpolates the general language model based on the analysis of the reference and so keeps the active paths of decoding relatively near the reference. It makes the recognition more accurate, which further improves the detection performance. At the final stage of detection, an improved dynamic program (DP) is used to align the confusion network (CN) from speech recognition and the reference to generate the detecting result. The experimental results show that the proposed two methods can decrease the Equal Error Rate (EER) by 14% relatively, from 46.4% to 39.8%.

  • Approximate Decision Function and Optimization for GMM-UBM Based Speaker Verification

    Xiang XIAO  Xiang ZHANG  Haipeng WANG  Hongbin SUO  Qingwei ZHAO  Yonghong YAN  

     
    LETTER-Speech and Hearing

      Vol:
    E92-D No:9
      Page(s):
    1798-1802

    The GMM-UBM framework has been proved to be one of the most effective approaches to the automatic speaker verification (ASV) task in recent years. In this letter, we first propose an approximate decision function of traditional GMM-UBM, from which it is shown that the contribution to classification of each Gaussian component is equally important. However, research in speaker perception shows that a different speech sound unit defined by Gaussian component makes a different contribution to speaker verification. This motivates us to emphasize some sound units which have discriminability between speakers while de-emphasize the speech sound units which contain little information for speaker verification. Experiments on 2006 NIST SRE core task show that the proposed approach outperforms traditional GMM-UBM approach in classification accuracy.