The search functionality is under construction.

Author Search Result

[Author] Xiao WU(6hit)

1-6hit
  • An Effective and Globally Convergent Newton Fixed-Point Homotopy Method for MOS Transistor Circuits

    Dan NIU  Xiao WU  Zhou JIN  Yasuaki INOUE  

     
    PAPER-Circuit Theory

      Vol:
    E96-A No:9
      Page(s):
    1848-1856

    Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. However, the previous studies are mainly focused on the bipolar transistor circuits. Also the efficiencies of the previous homotopy methods for MOS transistor circuits are not satisfactory. Therefore, finding a more efficient homotopy method for MOS transistor circuits becomes necessary and important. This paper proposes a Newton fixed-point homotopy method for MOS transistor circuits and proposes an embedding algorithm in the implementation as well. Moreover, the global convergence theorems of the proposed Newton fixed-point homotopy method for MOS transistor circuits are also proved. Numerical examples show that the efficiencies for finding DC operating points of MOS transistor circuits by the proposed MOS Newton fixed-point homotopy method with the two embedding types can be largely enhanced (can larger than 50%) comparing with the conventional MOS homotopy methods, especially for some large-scale MOS transistor circuits which can not be easily solved by the SPICE3 and HSPICE simulators.

  • Melody Track Selection Using Discriminative Language Model

    Xiao WU  Ming LI  Hongbin SUO  Yonghong YAN  

     
    LETTER-Music Information Processing

      Vol:
    E91-D No:6
      Page(s):
    1838-1840

    In this letter we focus on the task of selecting the melody track from a polyphonic MIDI file. Based on the intuition that music and language are similar in many aspects, we solve the selection problem by introducing an n-gram language model to learn the melody co-occurrence patterns in a statistical manner and determine the melodic degree of a given MIDI track. Furthermore, we propose the idea of using background model and posterior probability criteria to make modeling more discriminative. In the evaluation, the achieved 81.6% correct rate indicates the feasibility of our approach.

  • Effective Implementation and Embedding Algorithms of CEPTA Method for Finding DC Operating Points

    Zhou JIN  Xiao WU  Dan NIU  Yasuaki INOUE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E96-A No:12
      Page(s):
    2524-2532

    Recently, the compound element pseudo transient analysis, CEPTA, method is regarded as an efficient practical method to find DC operating points of nonlinear circuits when the Newton-Raphson method fails. In the previous CEPTA method, an effective SPICE3 implementation algorithm was proposed without expanding the Jacobian matrix. However the limitation of step size was not well considered. Thus, the non-convergence problem occurs and the simulation efficiency is still a big challenge for current LSI nonlinear cicuits, especially for some practical large-scale circuits. Therefore, in this paper, we propose a new SPICE3 implementation algorithm and an embedding algorithm, which is where to insert the pseudo capacitors, for the CEPTA method. The proposed implementation algorithm has no limitation for step size and can significantly improve simulation efficiency. Considering the existence of various types of circuits, we extend some possible embedding positions. Numerical examples demonstrate the improvement of simulation efficiency and convergence performance.

  • An Adaptive Time-Step Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear DC Circuit Equations

    Xiao WU  Zhou JIN  Dan NIU  Yasuaki INOUE  

     
    PAPER-Nonlinear Problems

      Vol:
    E100-A No:2
      Page(s):
    619-628

    An adaptive time-step control method is proposed for the damped pseudo-transient analysis (DPTA) method. The new method is based on the idea of switched evolution/relaxation (SER), which can automatically adapt the step size for different circuit states. Considering the number of iterations needed for the convergence of Newton-Raphson (NR) method and the states in previous steps, the proposed method can automatically optimize the time-step size. Using numerical examples, the new method is proven to improve robustness, simulation efficiency, and the convergence of DPTA for solving nonlinear DC circuit equations.

  • Automatic Singing Performance Evaluation for Untrained Singers

    Chuan CAO  Ming LI  Xiao WU  Hongbin SUO  Jian LIU  Yonghong YAN  

     
    LETTER-Music Information Processing

      Vol:
    E92-D No:8
      Page(s):
    1596-1600

    In this letter, we present an automatic approach of objective singing performance evaluation for untrained singers by relating acoustic measurements to perceptual ratings of singing voice quality. Several acoustic parameters and their combination features are investigated to find objective correspondences of the perceptual evaluation criteria. Experimental results show relative strong correlation between perceptual ratings and the combined features and the reliability of the proposed evaluation system is tested to be comparable to human judges.

  • An Effective Time-Step Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear DC Circuit Equations

    Xiao WU  Zhou JIN  Dan NIU  Yasuaki INOUE  

    This Paper was withdrawn by the authors. The withdrawal procedure has been completed on July 19, 2016.
     
    PAPER-Nonlinear Problems

      Vol:
    E98-A No:11
      Page(s):
    2274-2282

    An effective time-step control method is proposed for the damped pseudo-transient analysis (DPTA). This method is based on the idea of the switched evolution/relaxation method which can automatically adapt the step size for different circuit states. Considering the number of iterations needed for the convergence of the Newton-Raphson method, the new method adapts the suitable time-step size with the status of previous steps. By numerical examples, it is proved that this method can improve the simulation efficiency and convergence for the DPTA method to solve nonlinear DC circuits.