The search functionality is under construction.

Author Search Result

[Author] Hongyu YANG(4hit)

1-4hit
  • Geometry Clipmaps Terrain Rendering Using Hardware Tessellation

    Ge SONG  Hongyu YANG  Yulong JI  

     
    LETTER-Computer Graphics

      Pubricized:
    2016/11/09
      Vol:
    E100-D No:2
      Page(s):
    401-404

    Due to heavy rendering load and unstable frame rate when rendering large terrain, this paper proposes a geometry clipmaps based algorithm. Triangle meshes are generated by few tessellation control points in GPU tessellation shader. ‘Cracks’ caused by different resolution between adjacent levels are eliminated by modifying outer tessellation level factor of shared edges between levels. Experimental results show the algorithm is able to improve rendering efficiency and frame rate stability in terrain navigation.

  • Multi-Hop Distributed Clustering Algorithm Based on Link Duration Open Access

    Laiwei JIANG  Zheng CHEN  Hongyu YANG  

     
    PAPER-Network

      Vol:
    E107-B No:7
      Page(s):
    495-504

    As a hierarchical network framework, clustering aims to divide nodes with similar mobility characteristics into the same cluster to form a more structured hierarchical network, which can effectively solve the problem of high dynamics of the network topology caused by the high-speed movement of nodes in aeronautical ad hoc networks. Based on this goal, we propose a multi-hop distributed clustering algorithm based on link duration. The algorithm is based on the idea of multi-hop clustering, which ensures the coverage and stability of clustering. In the clustering phase, the link duration is used to accurately measure the degree of stability between nodes. At the same time, we also use the link duration threshold to filter out relatively stable links and use the gravity factor to let nodes set conditions for actively creating links based on neighbor distribution. When selecting the cluster head, we select the most stable node as the cluster head node based on the defined node stability weight. The node stability weight comprehensively considers the connectivity degree of nodes and the link duration between nodes. In order to verify the effectiveness of the proposed method, we compare them with the N-hop and K-means algorithms from four indicators: average cluster head duration, average cluster member duration, number of cluster head changes, and average number of intra-cluster link changes. Experiments show that the proposed method can effectively improve the stability of the topology.

  • Hybridizing Dragonfly Algorithm with Differential Evolution for Global Optimization Open Access

    MeiJun DUAN  HongYu YANG  Bo YANG  XiPing WU  HaiJun LIANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/17
      Vol:
    E102-D No:10
      Page(s):
    1891-1901

    Due to its simplicity and efficiency, differential evolution (DE) has gained the interest of researchers from various fields for solving global optimization problems. However, it is prone to premature convergence at local minima. To overcome this drawback, a novel hybrid dragonfly algorithm with differential evolution (Hybrid DA-DE) for solving global optimization problems is proposed. Firstly, a novel mutation operator is introduced based on the dragonfly algorithm (DA). Secondly, the scaling factor (F) is adjusted in a self-adaptive and individual-dependent way without extra parameters. The proposed algorithm combines the exploitation capability of DE and exploration capability of DA to achieve optimal global solutions. The effectiveness of this algorithm is evaluated using 30 classical benchmark functions with sixteen state-of-the-art meta-heuristic algorithms. A series of experimental results show that Hybrid DA-DE outperforms other algorithms significantly. Meanwhile, Hybrid DA-DE has the best adaptability to high-dimensional problems.

  • Traffic Flow Simulator Using Virtual Controller Model

    Haijun LIANG  Hongyu YANG  Bo YANG  

     
    LETTER-Intelligent Transport System

      Vol:
    E96-A No:1
      Page(s):
    391-393

    A new paradigm for building Virtual Controller Model (VCM) for traffic flow simulator is developed. It is based on flight plan data and is applied to Traffic Flow Management System (TFMS) in China. The problem of interest is focused on the sectors of airspace and how restrictions to aircraft movement are applied by air traffic controllers and demand overages or capacity shortfalls in sectors of airspace. To estimate and assess the balance between the traffic flow and the capacity of sector in future, we apply Virtual Controller model, which models by the sectors airspace system and its capacity constraints. Numerical results are presented and illustrated by applying them to air traffic data for a typical day in the Traffic Flow Management System. The results show that the predictive capabilities of the model are successfully validated by showing a comparison between real flow data and simulated sector flow, making this method appropriate for traffic flow management system.